Відповідь:
Цифра 6 становить 6 тисячних.
Пояснення:
Розбивка
Число в словах дев'ятьсот вісімдесят три та сто двадцять шість тисячних.
Відповідь:
6 - кількість тисячних.
Пояснення:
Щоб прокласти шлях для того, що я збираюся зробити, я збираюся заявити щось, що очевидно, але, можливо, не думав.
Значення 983 розраховується в одних
Конструкція десяткового поля така, що ми маємо
Таким чином, 6 в тисячних.
Сума цифр двозначного числа дорівнює 14. Різниця між десятковою цифрою та цифрою одиниць - 2. Якщо x - десяткове число, а y - цифра, яка система рівнянь представляє проблему слова?
X + y = 14 xy = 2 і (можливо) "Number" = 10x + y Якщо x і y складаються з двох цифр і нам говорять, що їхня сума 14: x + y = 14 Якщо різниця між десятковою цифрою x і одиниця цифри y дорівнює 2: xy = 2 Якщо x є десятковим розрядом "числа", а y - його одиницями: "Number" = 10x + y
Це число менше 200 і більше, ніж 100. Цифра цих цифр становить 5 менше 10. Цифра десятків на 2 більше, ніж цифра. Яке число?
175 Нехай число буде HTO Ones цифра = O Враховуючи, що O = 10-5 => O = 5 Також задається, що десятки розрядів T 2 більше, ніж цифри O => десятки цифр T = O + 2 = 5 + 2 = Число H 75 Дано також, що "число менше 200 і більше 100" => H може приймати значення тільки = 1 Ми отримуємо наш номер як 175
Продукт позитивного числа з двох цифр і цифра на місці його одиниці - 189. Якщо цифра в місці десяти в два рази більше, ніж на місці пристрою, яка цифра на місці пристрою?
3. Зауважте, що два цифри ном. виконання другої умови (умова) - 21,42,63,84. Серед них, оскільки 63xx3 = 189, ми робимо висновок, що дві цифри немає. є 63, а бажана цифра на місці одиниці - 3. Щоб розв'язати проблему методично, припустимо, що цифра десятого місця буде x, а одиниця - y, y. Це означає, що дві цифри немає. 10x + y. "1" (st) "cond." RArr (10x + y) y = 189. "2" (nd) "cond." RArr x = 2y. Підф. X = 2y в (10x + y) y = 189, {10 (2y) + y} = 189. :. 21y ^ 2 = 189 rArr y ^ 2 = 189/21 = 9 rArr y = + - 3. Зрозуміло, що y = -3 неприпустимо. :. y = 3, це бажана цифра, як і раніш