Відповідь:
Пояснення:
Зауважте, що:
Так функція
визначається для кожного
Крім того, як
Але це поліном другого порядку з провідним позитивним коефіцієнтом, отже, він не має максимуму і єдиного локального мінімуму.
Від
і:
тільки коли
і
лише для
Отже:
і:
лише для
Можна зробити висновок
Нам потрібно
-
Для
#x <-1 # ми маємо#g '(x) <0 # тому# g # строго зменшується в# (- oo, -1) # -
Для
#x> # #-1# ми маємо#g '(x)> 0 # тому# g # строго зростає в Росії. t# - 1, + oo) #
Звідси
Як результат
Функція f така, що f (x) = a ^ 2x ^ 2-ax + 3b для x <1 / (2a) Де a і b є постійними для випадку, коли a = 1 і b = -1 Знайти f ^ - 1 (cf і знайти свою область я знаю домен f ^ -1 (x) = діапазон f (x), і це -13/4, але я не знаю, нерівність знак напрямку?
Дивись нижче. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Діапазон: Покладіть у форму y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Мінімальне значення -13/4 Це відбувається при x = 1/2 Так діапазон ( 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Використовуючи квадратичну формулу: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x)) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 З невеликою думкою ми бачимо, що для домену у нас є необхідна інверсія : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 З домену: (-13 / 4, oo) З
Що таке (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Ми беремо, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) (2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (скасувати (2sqrt15) -5 + 2 * 3повернути (-sqrt15) - скасувати (2sqrt15) -5 + 2 * 3 + скасувати (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Зверніть увагу, що якщо в знаменниках є (sqrt3 + sqrt (3 + sqrt5)) і (sqrt3 + sqrt (3-sqrt5)), відповідь буд