Як знайти виключене значення і спростити (x ^ 2-13x + 42) / (x + 7)?

Як знайти виключене значення і спростити (x ^ 2-13x + 42) / (x + 7)?
Anonim

Відповідь:

# "виключено значення" = -7 #

Пояснення:

Знаменник раціонального виразу не може бути нульовим, оскільки це зробить його невизначеним. Прирівнювання знаменника до нуля і розв'язування дає значення, яке не може бути x.

# "вирішити" x + 7 = 0rArrx = -7larrcolor (червоний) "виключене значення" #

# "для спрощення чисельника і скасування будь-якого" # #

# "загальні фактори" #

# "коефіцієнти + 42, які становлять - 13 - 6 і - 7" #

# rArrx ^ 2-13x + 42 = (x-6) (x-7) #

#rArr (x ^ 2-13x + 42) / (x + 7) #

# = ((x-6) (x-7)) / (x + 7) larrcolor (червоний) "у найпростішому вигляді" #

Відповідь:

Обмеження: #x, спрощений вираз: вже спрощено

Пояснення:

оскільки знаменник # x + 7 # і ви не можете розділити на нуль, # x + 7 таким чином, #x

далі, оскільки вираз на чисельнику є квадратичним, він, ймовірно, може бути врахований. Все, що потрібно, - це два числа, які складають до -13 і два числа, які множаться на 42.

Якщо фактор 42 ви отримуєте: # # pm 1,2,3,6,7,14,21,42 #

зверніть увагу, що -6 і -7 додають до -13 і множать до 42, таким чином:

# x ^ 2-13x + 42 = x ^ 2-6x-7x + 42 = x (x-6) -7 (x-6) = (x-6) (x-7)

Жоден з цих лінійних факторів не скасовується з знаменником і, таким чином, вираз не можна спростити.