Відповідь:
Пояснення:
Що таке рівняння лінії, що проходить (-1,1) і перпендикулярно лінії, яка проходить через наступні точки: (13,1), (- 2,3)?
15x-2y + 17 = 0. Нахил m 'лінії через точки P (13,1) & Q (-2,3) становить, m' = (1-3) / (13 - (- 2)) = - 2/15. Отже, якщо нахил reqd. лінія m, то як reqd. лінія - бот до лінії PQ, mm '= - 1 rArr m = 15/2. Тепер, ми використовуємо формулу похилої точки для reqd. Лінія, як відомо, проходить через точку (-1,1). Таким чином, eqn. з reqd. line, is, y-1 = 15/2 (x - (- 1)), або, 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.
Що таке рівняння лінії, яка проходить через (-2,1) і перпендикулярна лінії, яка проходить через наступні точки: # (- 16,4), (6,12)?
Давайте спочатку знайдемо рівняння лінії, на яку він перпендикулярний. Для цього потрібно знайти нахил: m = (y_2 - y_1) / (x_2 - x_1) m = (12 - 4) / (6 - (-16)) m = 8/22 m = 4/11 за формою нахилу точок: y- y_1 = m (x - x_1) y - 12 = 4/11 (x - 6) y - 12 = 4 / 11x - 24/11 y = 4 / 11x - 24/11 + 12 y = 4 / 11x + 108/11 Нахил лінії, перпендикулярної до іншої, завжди має нахил, який є негативним, зворотним іншої лінії. Отже, m_ "перпендикулярний" = -11/4 Знову за формою нахилу точок: y - y_1 = m (x - x_1) y - 1 = -11/4 (x - (-2)) y - 1 = - 11 / 4x - 11/2 y = -11 / 4x - 11/2 + 1 y = -11 / 4x - 9/2:. Рівняння лінії y = -
Що таке рівняння лінії, яка проходить через (-1,4) і перпендикулярна лінії, яка проходить через наступні точки: (-2,2), (5, -6)?
8y = 7 x + 39 Нахил m, лінії, що проходить через (x1, y1) & (x2, y2), є m = (y2 - y1) / (x2 - x1) Таким чином, нахил лінії, що проходить через (- 2,2) & (5, -6) m = (-6 - 2) / ((5 - (-2)) = -8 / 7 Тепер, якщо нахил двох ліній, перпендикулярних один одному, дорівнює m і m ', маємо відношення m * m' = -1 Отже, в нашій задачі, нахил, м2, першого рядка = -1 / (-8 / 7) = 7/8 Нехай рівняння лінії t y = m2x + c Тут, m2 = 7/8 Отже, рівняння y = 7/8 x + c Проходить через точки, (-1,4) Підставляючи значення x і y, 4 = 7/8 * (-1) + c або c = 4 + 7/8 = 39/8 Так рівняння y = 7/8 x + 39/8 або 8 y = 7 x + 39