Нормальна форма загального квадратичного рівняння в одній змінної
Пов'язане з таким квадратичним рівнянням є дискримінант
Можна записати загальне рішення квадратичного рівняння
або
Часто це припускають люди
Функції f (x) = - (x - 1) 2 + 5 і g (x) = (x + 2) 2 - 3 були переписані методом завершення-квадрат. Чи є вершина для кожної функції мінімальною або максимальною? Поясніть свої міркування для кожної функції.
Якщо записати квадратичну у вигляді вершини: y = a (x-h) ^ 2 + k Тоді: bbacolor (білий) (8888) - це коефіцієнт x ^ 2 bbhcolor (білий) (8888) - вісь симетрії. bbkcolor (білий) (8888) - це значення max / min функції. Також: Якщо a> 0, то парабола буде мати вигляд uuu і матиме мінімальне значення. Якщо a <0, то парабола буде мати вигляд nnn і матиме максимальне значення. Для заданих функцій: a <0 f (x) = - (x-1) ^ 2 + 5колір (білий) (8888) має максимальне значення bb5 a> 0 f (x) = (x + 2) ^ 2-3 кольору (білий) (8888888) має мінімальне значення bb (-3)
Нули функції f (x) дорівнюють 3 і 4, а нулі другої функції g (x) - 3 і 7. Якими є нуль (s) функції y = f (x) / g (x) )?
Тільки нуль у = f (x) / g (x) дорівнює 4. Оскільки нулі функції f (x) дорівнюють 3 та 4, це означає (x-3), а (x-4) - коефіцієнти f (x) ). Далі нулі другої функції g (x) дорівнюють 3 і 7, що означає (x-3) і (x-7) - коефіцієнти f (x). Це означає, що у функції y = f (x) / g (x), хоча (x-3) має скасувати знаменник g (x) = 0, не визначено, коли x = 3. Він також не визначається при x = 7. Отже, ми маємо дірку при x = 3. і тільки нуль y = f (x) / g (x) дорівнює 4.
Що означають змінні в квадратичній формулі?
Квадратична формула використовує коефіцієнти квадратичного рівняння в стандартній формі, коли вона дорівнює нулю (y = 0). Квадратичне рівняння у стандартній формі виглядає так: y = ax ^ 2 + bx + c. Квадратична формула є x = (-b + - sqrt (b ^ 2 - 4ac)) / (2a), коли y = 0. Ось приклад того, як коефіцієнти квадратичного рівняння використовуються як змінні у квадратичній формулі : 0 = 2x ^ 2 + 5x + 3 Це означає, що a = 2, b = 5, c = 3. Отже, квадратична формула стає: x = (-5 + - sqrt (5 ^ 2 - 4 (2) (3) ))) / (2 * 2) x = (-5 + - sqrt (25 - 4 (2) (3))) / (2 * 2) x = (-5 + - sqrt (25 - 24)) / (2 * 2) x = (-5 + - sqrt (1)) / (2 *