Відповідь:
Вертикальні асимптоти є
Горизонтальна асимптота є
Немає косої асимптоти
Пояснення:
Розглянемо чисельник
Знаменником є
Тому,
Домен
Щоб знайти вертикальні асимптоти, ми обчислимо
тому, Вертикальна асимптота є
Вертикальна асимптота є
Для обчислення горизонтальних асимптот ми обчислимо ліміт як
Горизонтальна асимптота є
Немає косої асимптоти, оскільки ступінь чисельника є
граф {(3x ^ 2 + 2x-1) / (x ^ 2-4) -14.24, 14.24, -7.12, 7.12}
Відповідь:
Пояснення:
Знаменник f (x) не може бути нульовим, оскільки це зробить f (x) невизначеною. Прирівнювання знаменника до нуля і розв'язування дає значення, яких не може бути x, і якщо чисельник не є нулем для цих значень, то вони є вертикальними асимптотами.
# "вирішити" x ^ 2-4 = 0rArr (x-2) (x + 2) = 0 #
# rArrx = -2 "і" x = 2 "є асимптотами" #
# "горизонтальні асимптоти виникають як" #
#lim_ (xto + -oo), f (x) toc "(константа)" # розділити умови на чисельник / знаменник на найвищу потужність x, тобто
# x ^ 2 #
#f (x) = ((3x ^ 2) / x ^ 2 + (2x) / x ^ 2-1 / x ^ 2) / (x ^ 2 / x ^ 2-4 / x ^ 2) = (3 + 2 / x-1 / x ^ 2) / (1-4 / x ^ 2) # як
# xto + -oo, f (x) до (3 + 0-0) / (1-0) #
# rArry = 3 "є асимптотою" #
# "Немає знімних розривів" # графік {(3x ^ 2 + 2x-1) / (x ^ 2-4) -10, 10, -5, 5}
Які асимптоти і знімні розриви, якщо такі є, f (x) = (1 - 4x ^ 2) / (1 - 2x)?
Функція буде переривчастою, коли знаменник дорівнює нулю, що відбувається, коли x = 1/2 As | x | стає дуже великим, вираз має тенденцію до + -2x. Тому немає асимптот, оскільки вираз не прагне до певного значення. Вираз можна спростити, зазначивши, що чисельник є прикладом різниці двох квадратів. Тоді f (x) = ((1-2x) (1 + 2x)) / ((1-2x)) Фактор (1-2x) скасовується, а вираз стає f (x) = 2x + 1, що є рівняння прямої. Розрив було видалено.
Які асимптоти і знімні розриви, якщо такі є, f (x) = (1-5x) / (1 + 2x)?
"вертикальна асимптота при" x = 1/2 "горизонтальна асимптота при" y = -5 / 2 Знаменник f (x) не може бути нульовим, оскільки це зробить f (x) невизначеною. Прирівнювання знаменника до нуля і розв'язування дає значення, що x не може бути, і якщо чисельник не є нулем для цього значення, то це вертикальна асимптота. "вирішити" 1 + 2x = 0rArrx = -1 / 2 "- це асимптота" "горизонтальних асимптот, що виникають як" lim_ (xto + --oo), f (x) toc "(константа)" "розділяють умови на чисельник / знаменник на x "f (x) = (1 / x- (5x) / x) / (1 / x + (2x) / x) = (1 /
Які асимптоти і знімні розриви, якщо такі є, f (x) = (1 / (x-10)) + (1 / (x-20))?
Дивись нижче. Додайте фракції: ((x-20) + (x-10)) / ((x-10) (x-20)) = (2x-30) / ((x-10) (x-20)) Фактор чисельник: (2 (x-15)) / ((x-10) (x-20)) Ми не можемо скасувати будь-які чинники в чисельнику з коефіцієнтами в знаменнику, так що немає змінних розривів. Функція не визначена для x = 10 і x = 20. (поділ на нуль) Отже: x = 10 і x = 20 - вертикальні асимптоти. Якщо розширити знаменник і чисельник: (2x-30) / (x ^ 2-30x + 22) Розділити на x ^ 2: ((2x) / x ^ 2-30 / x ^ 2) / (x ^ 2 / x ^ 2- (30x) / x ^ 2 + 22 / x ^ 2) Скасування: ((2) / x-30 / x ^ 2) / (1- (30) / x + 22 / x ^ 2) ((2) / x-30 / x ^ 2) / (1- (30) / x + 22 / x ^ 2)