Відповідь:
Пояснення:
Тут можна застосувати закон Чарльза, який говорить, що під постійним тиском V (об'єм) пропорційно температурі
Тому
І впевнений, що питання не змінюється адіабатично. Як ми також не знаємо величини питомої теплоти.
Тому підстановка значень у рівнянні дає нам:
=>
Відповідь:
Кінцева температура становить
Пояснення:
Це приклад закону Карла, в якому зазначається, що об'єм заданої кількості газу, що знаходиться при постійному тиску, прямо пропорційний температурі Кельвіна. Це означає, що якщо об'єм збільшується, то зростає і температура, і навпаки. Рівняння для цього закону:
Відомий
Невідомо
Рішення
Перегрупувати рівняння для ізоляції
Температура в градусах Цельсія:
Відняти
Обсяг закритого газу (при постійному тиску) змінюється безпосередньо як абсолютна температура. Якщо тиск 3,66-л зразка неонового газу при 302 ° К становить 0,926 атм, то який б обсяг був при температурі 338 ° К, якщо тиск не змінюється?
3.87L Цікава практична (і дуже поширена) проблема хімії для алгебраїчного прикладу! Цей не забезпечує фактичне рівняння Закону про ідеальний газ, але показує, як частина його (Закон Чарльза) виводиться з експериментальних даних. Алгебраїчно кажуть, що швидкість (нахил лінії) є постійною по відношенню до абсолютної температури (незалежної змінної, як правило, осі х) і обсягу (залежної змінної, або осі ординат). Для правильності необхідна умова постійного тиску, оскільки вона задіяна в газових рівняннях також і в реальності. Крім того, фактичне рівняння (PV = nRT) може обмінюватися будь-яким з факторів для залежних або незал
Якщо 12 л газу при кімнатній температурі чинить тиск 64 кПа на його контейнері, який тиск буде подаватися, якщо обсяг контейнера змінюється на 24 л?
Контейнер тепер має тиск 32 кПа. Почнемо з виявлення наших відомих і невідомих змінних. Перший об'єм має 12 л, перший - 64 кПа, другий - 24 л. Нашим єдиним невідомим є другий тиск. Ми можемо отримати відповідь, використовуючи Закон Бойля, який показує, що існує зворотна залежність між тиском і об'ємом, поки температура і кількість молей залишаються постійними. Рівняння, яке ми використовуємо, це: все, що ми повинні зробити, це змінити рівняння, щоб вирішити для P_2 Ми робимо це, розділивши обидві сторони на V_2 для того, щоб отримати P_2 само собою: штепсель у заданих значеннях: P_2 = (64 кПа xx 12, скасувати "
Якщо 7/5 л газу при кімнатній температурі чинить тиск 6 кПа на його контейнері, який тиск буде подаватися, якщо обсяг контейнера змінюється на 2/3 л?
Газ буде надавати тиск 63/5 кПа. Почнемо з ідентифікації наших відомих і невідомих змінних. Перший об'єм має 7/5 л, перший тиск 6 кПа, другий - 2/3 л. Нашим єдиним невідомим є другий тиск. Ми можемо отримати відповідь, використовуючи Закон Бойля: Букви i та f представляють початкові та кінцеві умови. Все, що нам потрібно зробити, це змінити рівняння для остаточного тиску. Ми робимо це, розділивши обидві сторони на V_f, щоб отримати P_f сам по собі так: P_f = (P_ixxV_i) / V_f Тепер все, що ми робимо, це підключити значення і ми зробили! P_f = (6 кПа xx 7/5 відмінити "L") / (2/3 відмінити "L") = 63/5