Відповідь:
Пояснення:
Знаменник f (x) не може бути нульовим, оскільки це зробить f (x) невизначеною. Прирівнювання знаменника до нуля і розв'язування дає значення, яких не може бути x.
# "вирішити" 5x ^ 2 + 2x + 1 = 0 # Це не факторизується, отже, перевірте
#color (синій) "дискримінант" #
# "here" a = 5, b = 2 "і" c = 1 #
# b ^ 2-4ac = 4-20 = -16 # Оскільки дискримінант має <0, то не існує реальних коренів, отже, немає вертикальних асимптот.
Горизонтальні асимптоти виникають як
#lim_ (xto + -oo), f (x) toc "(константа)" # розділити умови на чисельник / знаменник на найвищу потужність x, тобто
# x ^ 2 #
#f (x) = ((3x ^ 2) / x ^ 2) / ((5x ^ 2) / x ^ 2 + (2x) / x ^ 2 + 1 / x ^ 2) = 3 / (5 + 2) / x + 1 / x ^ 2) # як
# xto + -oo, f (x) до3 / (5 + 0 + 0) #
# rArry = 3/5 "є асимптотою" # Ділянки відбуваються, коли на чисельнику / знаменнику є подвійний коефіцієнт. Це не так, отже, отворів немає.
граф {(3x ^ 2) / (5x ^ 2 + 2x + 1) -10, 10, -5, 5}
Що таке асимптота (и) і отвір (и), якщо такі є, f (x) = (1 + 1 / x) / (1 / x)?
Це отвір при x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Це лінійна функція з градієнтом 1 і y-переходом 1. Визначається на кожному x, крім x = 0, оскільки поділ на 0 не визначено.
Що таке асимптота (и) і отвір (и), якщо такі є, f (x) = 1 / cosx?
У x = pi / 2 + pin, n та integer будуть вертикальні асимптоти. Будуть асимптоти. Всякий раз, коли знаменник дорівнює 0, відбуваються вертикальні асимптоти. Давайте задамо знаменник 0 і вирішимо. cosx = 0 x = pi / 2, (3pi) / 2 Так як функція y = 1 / cosx є періодичною, то будуть нескінченні вертикальні асимптоти, всі слідують за шаблоном x = pi / 2 + pin, n цілого числа. Нарешті, зауважимо, що функція y = 1 / cosx еквівалентна y = secx. Сподіваюся, це допоможе!
Що таке асимптота (и) і отвір (и), якщо такі є, f (x) = 1 / (2-x)?
Асимптотами цієї функції є x = 2 і y = 0. 1 / (2-x) - раціональна функція. Це означає, що форма функції є такою: графік {1 / x [-10, 10, -5, 5]} Тепер функція 1 / (2-x) слідує тій же структурі графа, але з кількома змінами . Графік спочатку зміщується горизонтально вправо на 2. За цим слідує відображення над віссю x, що призводить до отримання графіка так: графік {1 / (2-x) [-10, 10, -5, 5] ]} З урахуванням цього графіка, щоб знайти асимптоти, все, що потрібно, шукайте рядки, на які граф не торкається. А це x = 2, y = 0.