Відповідь:
Є місцевий мінімум
Пояснення:
Для
Тоді знайдіть
# = (lnx (2-lnx)) / x ^ 2 # .
Випробування інтервалів
(Для тестових номерів, я пропоную
Ми знаходимо це
і що
Які локальні екстремуми, якщо такі є, f (x) = 2ln (x ^ 2 + 3) -x?
F (x) = 2ln (x ^ 2 + 3) -x має локальний мінімум для x = 1 і локальний максимум для x = 3 Ми маємо: f (x) = 2ln (x ^ 2 + 3) -x Функція визначена у всьому RR як x ^ 2 + 3> 0 AA x Ми можемо ідентифікувати критичні точки, знаходячи, де перша похідна дорівнює нулю: f '(x) = (4x) / (x ^ 2 + 3) - 1 = - (x ^ 2-4x + 3) / (x ^ 2 + 3) - (x ^ 2-4x + 3) / (x ^ 2 + 3) = 0 x ^ 2-4x + 3 = 0 x = 2 + -sqrt (4-3) = 2 + -1, так що критичні точки: x_1 = 1 і x_2 = 3 Оскільки знаменник завжди позитивний, знак f '(x) є протилежним знаку Чисельник (x ^ 2-4x + 3) Тепер відомо, що поліном другого порядку з позитивним провідним коефіцієнт
Які локальні екстремуми, якщо такі є, f (x) = 120x ^ 5 - 200x ^ 3?
Локальний максимум 80 (при x = -1) і локальний мінімум -80 (при x = 1. f (x) = 120x ^ 5 - 200x ^ 3 f '(x) = 600x ^ 4 - 600x ^ 2 = 600x ^ 2 (x ^ 2 - 1) Критичні числа: -1, 0 і 1 Знак f 'змінюється від + до - при передачі x = -1, так f (-1) = 80 - локальний максимум (Оскільки f непарний, можна негайно зробити висновок, що f (1) = - 80 є відносним мінімумом, а f (0) не є локальним екстремумом). так що f (0) не є локальним екстремумом, а знак f 'змінюється від - до +, коли ми проходимо х = 1, тому f (1) = -80 є локальним мінімумом.
Які локальні екстремуми, якщо такі є, f (x) = (lnx-1) ^ 2 / x?
(e ^ 3, 4e ^ -3) Максимальна точка (e, 0) Мінімальна точка