Як ви знаходите похідні y = (5x-2) ^ 3 (6x + 1) ^ 2 логарифмічною диференціацією?

Як ви знаходите похідні y = (5x-2) ^ 3 (6x + 1) ^ 2 логарифмічною диференціацією?
Anonim

Відповідь:

# y '= (5x-2) ^ 3 (6x + 1) ^ 2 ## ((15) / (5x-2) + (12) / (6x + 1)) #

Пояснення:

1 / ln (y) = # 3ln (5x-2) + 2ln (6x + 1) #

2/ # (1) / (y) y '# = # (3) ((1) / (5x-2)) (5) + (2) ((1) / (6x + 1)) (6) #

3/ # (1) / (y) y '# = # (15) / (5x-2) + (12) / (6x + 1) #

4 / y '= y# ((15) / (5x-2) + (12) / (6x + 1)) #

5 / y '= # (5x-2) ^ 3 (6x + 1) ^ 2 ## ((15) / (5x-2) + (12) / (6x + 1)) #