Відповідь:
Пояснення:
Дозволяє,
або,
або,
або,
Тепер,
Тепер,
Відповідь:
Пояснення:
Інтегрувати за частинами:
Відповідь:
Пояснення:
Дозволяє,
Нагадаємо, що,
E.g,
Що таке (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Ми беремо, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) (2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (скасувати (2sqrt15) -5 + 2 * 3повернути (-sqrt15) - скасувати (2sqrt15) -5 + 2 * 3 + скасувати (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Зверніть увагу, що якщо в знаменниках є (sqrt3 + sqrt (3 + sqrt5)) і (sqrt3 + sqrt (3-sqrt5)), відповідь буд
Що таке інтеграція 1 / log (sqrt (1-x))?
Тут лог ln .. Відповідь: (2sum ((- 1) ^ (n-1)) / n (x / ln (1-x)) ^ n, n = 1, 2, 3, ..oo) + C .. = 2ln (1 + x / (ln (1-x))) + C, | x / (ln (1-x)) | <1 Послідовно використовуйте intu dv = uv-intv du. inti / (lnsqrt (1-x) dx = 2int1 / ln (1-x) dx = 2 [x / ln (1-x) -intxd (1 / ln (1-x))] = 2 [[x / ln (1-x) -intx / (ln (1-x)) ^ 2 dx] = 2 [[x / ln (1-x) -int1 / (ln (1-x)) ^ 2 d (x ^ 2/2)] і т. Д. Остаточна нескінченна серія з'являється як відповідь, я ще вивчаю інтервал збіжності для ряду. На даний момент | x / (ln (1-x)) | <1 Явний Інтервал для x, з цієї нерівності, регулює інтервал для будь-якого визначеного інтегра
Що таке інтеграція (dx) / (x.sqrt (x ^ 3 + 4)) ??
1/6 ln | {sqrt (x ^ 3 + 4) -2} / {sqrt (x ^ 3 + 4) +2} | + C Заміна x ^ 3 + 4 = u ^ 2. Тоді 3x ^ 2dx = 2udu, так що dx / {x sqrt {x ^ 3 + 4}} = {2udu} / {3x ^ 3u} = 2/3 {du} / (u ^ 2-4) = 1 / 6 ({du} / {u-2} - {du} / {u + 2}) Таким чином, int dx / {x sqrt {x ^ 3 + 4}} = 1/6 int ({du} / {u- 2} - {du} / {u + 2}) = 1/6 ln | {u-2} / {u + 2} | + C = 1/6 ln | {sqrt (x ^ 3 + 4) -2 } / {sqrt (x ^ 3 + 4) +2} | + C