Абсолютні екстремуми можуть виникати на кордонах, на локальних екстремумах або невизначених точках.
Знайдемо значення
Тоді знайдіть локальні екстремуми похідною. Похідна Росії
Таким чином,
Потім знайдіть невизначені точки. Однак для всіх
Отже, це означає, що абсолютний максимум є
Які абсолютні екстремуми f (x) = x ^ 3 - 3x + 1 в [0,3]?
На [0,3] максимум дорівнює 19 (при х = 3), а мінімум -1 (при х = 1). Для знаходження абсолютних екстремумів (безперервної) функції на замкнутому інтервалі ми знаємо, що екстремуми повинні відбуватися в будь-яких критичних числах в інтервалі або в кінцях інтервалу. f (x) = x ^ 3-3x + 1 має похідну f '(x) = 3x ^ 2-3. 3x ^ 2-3 ніколи не визначено і 3x ^ 2-3 = 0 при x = + - 1. Оскільки -1 не знаходиться в інтервалі [0,3], ми його відкидаємо. Єдиним критичним числом для розгляду є 1. f (0) = 1 f (1) = -1 і f (3) = 19. Отже, максимум 19 (при x = 3) і мінімум -1 ( x = 1).
Які абсолютні екстремуми f (x) = (x ^ 3-7x ^ 2 + 12x-6) / (x-1) в [1,4]?
Глобальних максимумів немає. Глобальний мінімум дорівнює -3 і відбувається при x = 3. f (x) = (x ^ 3 - 7x ^ 2 + 12x - 6) / (x - 1) f (x) = ((x - 1) (x ^ 2 - 6x + 6)) / (x - 1) f (x) = x ^ 2 - 6x + 6, де x f 1 f '(x) = 2x - 6 Абсолютні екстремуми відбуваються на кінцевій точці або на критичне число. Кінцеві точки: 1 & 4: x = 1 f (1): "undefined" lim_ (x 1) f (x) = 1 x = 4 f (4) = -2 Критична точка (и): f '(x) = 2x - 6 f '(x) = 0 2x - 6 = 0, x = 3 При x = 3 f (3) = -3 Немає глобальних максимумів. Не існує глобальних мінімумів -3 і відбувається при x = 3.
Які абсолютні екстремуми f (x) = 1 / (1 + x ^ 2) в [oo, oo]?
X = 0 - максимум функції. f (x) = 1 / (1 + x²) Пошук f '(x) = 0 f' (x) = - 2x / ((1 + x²) ²) Таким чином, ми бачимо, що існує унікальне рішення, f ' (0) = 0 А також, що це рішення є максимумом функції, оскільки lim_ (x до ± oo) f (x) = 0, а f (0) = 1 0 / ось наша відповідь!