Нам потрібні ці дві ідентичності для завершення доказу:
Я почну з правої сторони, а потім маніпулювати нею, поки не буде виглядати ліва сторона:
Це доказ. Сподіваюся, що це допомогло!
Ми прагнемо довести ідентичність:
# (tanx + sinx) / (2tanx) - = cos ^ 2 (x / 2) #
Розглянемо LHS виразу і використовуємо визначення дотичної:
# LHS = (tanx + sinx) / (2tanx) #
# (sinx / cosx + sinx) / (2 (sinx / cosx)) #
(cosx / sinx) ((sinx / cosx + sinx) / 2) #
# (cosx / sinx * sinx / cosx + cosx / sinx * sinx) / 2 # t
# (1 + cosx) / 2 # t
Тепер розгляньте RHS та використовуйте ідентифікацію:
# cos2A - = 2кос ^ 2А - 1 #
Надання нам:
# cosx - = 2cos ^ 2 (x / 2) - 1 => 1 + cosx - = 2cos ^ 2 (x / 2) #
#:. cos ^ 2 (x / 2) = (1 + cosx) / 2 = RHS #
Таким чином:
# LHS = RHS => (tanx + sinx) / (2tanx) - = cos ^ 2 (x / 2) t QED
Покажіть, що cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Я трохи заплутаний, якщо я зробив Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), він стане негативним, оскільки cos (180 ° -тета) = - costheta в другий квадрант. Як я можу довести це питання?
Дивіться нижче. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Як довести (cotx + cscx / sinx + tanx) = (cotx) (cscx)?
Перевірено нижче (cotx + cscx) / (sinx + tanx) = (cotx) (cscx) (cosx / sinx + 1 / sinx) / (sinx + sinx / cosx) = (cotx) (cscx) ((cosx + 1) / sinx) / ((sinxcosx) / cosx + sinx / cosx) = (cotx) (cscx) ((cosx + 1) / sinx) / ((sinx (cosx + 1)) / cosx) = (cotx) (cscx) ) (скасувати (cosx + 1) / sinx) * (cosx / (sinxcancel ((cosx + 1))))) = (cotx) (cscx) (cosx / sinx * 1 / sinx) = (cotx) (cscx) cotx) (cscx) = (cotx) (cscx)
Довести (1 + sinx + icosx) / (1 + sinx-icosx) = sinx + icosx?
Дивись нижче. Використовуючи ідентичність де Мойвера, яка визначає e ^ (ix) = cos x + i sin x, у нас є (1 + e ^ (ix)) / (1 + e ^ (- ix)) = e ^ (ix) (1+) e ^ (- ix)) / (1 + e ^ (- ix)) = e ^ (ix) ПРИМІТКА e ^ (ix) (1 + e ^ (- ix)) = (cos x + isinx) (1+ cosx-i sinx) = cosx + cos ^ 2x + isinx + sin ^ 2x = 1 + cosx + isinx або 1 + cosx + isinx = (cos x + isinx) (1 + cosx-i sinx)