Відповідь:
Послідовність має таку ж поведінку, як
Пояснення:
Ви повинні трохи маніпулювати виразом, щоб зробити це твердження ясним. Розділіть усі терміни на
Перший і другий члени геометричної послідовності є відповідно першим і третім членом лінійної послідовності. Четвертий член лінійної послідовності дорівнює 10, а сума перших п'яти її термінів - 60 Знайти перші п'ять членів лінійної послідовності?
{16, 14, 12, 10, 8} Типова геометрична послідовність може бути представлена як c_0a, c_0a ^ 2, cdots, c_0a ^ k і типова арифметична послідовність як c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Виклик c_0 a як перший елемент для геометричної послідовності маємо {(c_0 a ^ 2 = c_0a + 2Delta -> "Перший і другий з GS є першим і третім LS"), (c_0a + 3Delta = 10- > "Четвертий член лінійної послідовності дорівнює 10"), (5c_0a + 10Delta = 60 -> "Сума її першого п'яти терміна становить 60"):} Вирішення для c_0, a, Delta отримуємо c_0 = 64/3 , a = 3/4, дельта = -2 і перші п'
Якою буде межа наступної послідовності, коли n прагне до нескінченності? Чи буде послідовність збігатися або розходитися?
1 lim_ (n ) a_n = lim_ (n ) (1 + sinn) ^ (1 / n) = (1 + sin ) ^ (1 / ) = (1+ (будь-яке число між -1 і 1)) ^ 0 = 1 з цього випливає, що задана послідовність збіжна і збіжна до 1
Другий член в геометричній послідовності - 12. Четвертий член в тій же послідовності - 413. Яке загальне відношення в цій послідовності?
Загальний коефіцієнт r = sqrt (413/12) Другий термін ar = 12 Четвертий член ar ^ 3 = 413 Загальне співвідношення r = {ar ^ 3} / {ar} r = sqrt (413/12)