Відповідь:
Пояснення:
Термін у геометричній послідовності задається:
Ваш перший термін дорівнює
Щоб знайти восьмий термін, ми тепер знаємо це
Тому ми можемо підставляти наші значення до формули
Перший і другий члени геометричної послідовності є відповідно першим і третім членом лінійної послідовності. Четвертий член лінійної послідовності дорівнює 10, а сума перших п'яти її термінів - 60 Знайти перші п'ять членів лінійної послідовності?
{16, 14, 12, 10, 8} Типова геометрична послідовність може бути представлена як c_0a, c_0a ^ 2, cdots, c_0a ^ k і типова арифметична послідовність як c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Виклик c_0 a як перший елемент для геометричної послідовності маємо {(c_0 a ^ 2 = c_0a + 2Delta -> "Перший і другий з GS є першим і третім LS"), (c_0a + 3Delta = 10- > "Четвертий член лінійної послідовності дорівнює 10"), (5c_0a + 10Delta = 60 -> "Сума її першого п'яти терміна становить 60"):} Вирішення для c_0, a, Delta отримуємо c_0 = 64/3 , a = 3/4, дельта = -2 і перші п'
Сума чотирьох послідовних членів геометричної послідовності дорівнює 30. Якщо АМ першого і останнього терміну дорівнює 9. Знайти загальний коефіцієнт.
Нехай 1-й термін і загальний коефіцієнт GP - це a і r відповідно. До першої умови a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) За другою умовою a + ar ^ 3 = 2 * 9 .... (2) Віднімання (2) з (1) ar + ar ^ 2 = 12 .... (3) Поділ (2) на (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Так r = 2 або1 / 2
Перший член геометричної послідовності дорівнює 4, а коефіцієнт, або коефіцієнт, - –2. Яка сума перших 5 членів послідовності?
Перший член = a_1 = 4, загальний коефіцієнт = r = -2 і число термінів = n = 5 Сума геометричних рядів до n темс задається S_n = (a_1 (1-r ^ n)) / (1-r) ) Де S_n - сума до n термінів, n - число членів, a_1 - перший член, r - загальний коефіцієнт. Тут a_1 = 4, n = 5 і r = -2 означає S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Отже, сума становить 44