Ванесса має 180 футів фехтування, які вона збирається використовувати для створення прямокутної ігрової зони для свого собаки. Вона хоче, щоб ігровий майданчик містив не менше 1800 квадратних футів. Які можливі ширини ігрової зони?

Ванесса має 180 футів фехтування, які вона збирається використовувати для створення прямокутної ігрової зони для свого собаки. Вона хоче, щоб ігровий майданчик містив не менше 1800 квадратних футів. Які можливі ширини ігрової зони?
Anonim

Відповідь:

Можлива ширина області відтворення: 30 футів або 60 футів.

Пояснення:

Нехай довжина буде # l # і ширина # w #

Периметр = # 180 футів = 2 (l + w) #---------(1)

і

Площа = # 1800 футів ^ 2 = l xx w #----------(2)

З (1), # 2l + 2w = 180 #

# => 2l = 180-2w #

# => l = (180 - 2w) / 2 #

# => l = 90-w #

Замініть цю величину # l # в (2), # 1800 = (90-w) xx w #

# => 1800 = 90w - w ^ 2 #

# => w ^ 2 -90w + 1800 = 0 #

Вирішуючи це квадратичне рівняння, маємо:

# => w ^ 2 -30w -60w + 1800 = 0 #

# => w (w -30) -60 (w- 30) = 0 #

# => (w-30) (w-60) = 0 #

#therefore w = 30 або w = 60 #

Можлива ширина області відтворення: 30 футів або 60 футів.

Відповідь:

# 30 "або" 60 "футів" #

Пояснення:

# "за допомогою наступних формул, пов'язаних з прямокутниками" #

# "де" l "- це довжина та" w "ширина" #

# • "Периметр (P)" = 2l + 2w #

# • "область (A)" = lxxw = lw #

# "периметр буде" 180 "футів" larrcolor (синій) "фехтування" #

# "отримання" l "в термінах" w #

# rArr2l + 2w = 180 #

# rArr2l = 180-2w #

# rArrl = 1/2 (180-2w) = 90-w #

# A = lw = w (90-w) = 1800 #

# rArrw ^ 2-90w + 1800 = 0larrcolor (синій) "квадратичне рівняння" #

# "коефіцієнти + 1800, які становлять - 90 - 30 і - 60" #

#rArr (w-30) (w-60) = 0 #

# "прирівняти кожен фактор до нуля і вирішити для" w #

# w-30 = 0rArrw = 30 #

# w-60 = 0rArrw = 60 #