Відповідь:
Рівняння є
Пояснення:
Схил є
Формула для рівняння рядка при заданому наборі координат і нахилу:
Що таке рівняння рядка з m = -5 і проходить через (8, -2)?
Y = -5x + 38 Загальне рівняння лінії є y = mx + b де: m = нахил b = y-перехоплення [Дано] m = -5 проходить через (8, -2) Оскільки ми знаємо нахил, ми знати, що наше рівняння буде слідувати за формою: y = -5x + b Оскільки ми знаємо, що лінія проходить через точку (8, -2), ми можемо замінити ці значення на наше рівняння вище, щоб знайти b або наш y-перехоп. [Рішення] y = -5x + b -2 = -5 (8) + b -2 = -40 + b b = 38 Отже, остаточне рівняння: y = -5x + 38
Що таке рівняння лінії, яка проходить через (-2,1) і перпендикулярна лінії, яка проходить через наступні точки: # (- 16,4), (6,12)?
Давайте спочатку знайдемо рівняння лінії, на яку він перпендикулярний. Для цього потрібно знайти нахил: m = (y_2 - y_1) / (x_2 - x_1) m = (12 - 4) / (6 - (-16)) m = 8/22 m = 4/11 за формою нахилу точок: y- y_1 = m (x - x_1) y - 12 = 4/11 (x - 6) y - 12 = 4 / 11x - 24/11 y = 4 / 11x - 24/11 + 12 y = 4 / 11x + 108/11 Нахил лінії, перпендикулярної до іншої, завжди має нахил, який є негативним, зворотним іншої лінії. Отже, m_ "перпендикулярний" = -11/4 Знову за формою нахилу точок: y - y_1 = m (x - x_1) y - 1 = -11/4 (x - (-2)) y - 1 = - 11 / 4x - 11/2 y = -11 / 4x - 11/2 + 1 y = -11 / 4x - 9/2:. Рівняння лінії y = -
Напишіть точкову форму рівняння з заданим нахилом, що проходить через зазначену точку. A.) лінія з нахилом -4, що проходить через (5,4). а також B.) лінія з нахилом 2, що проходить через (-1, -2). Будь ласка, допоможіть, це заплутано?
Y-4 = -4 (x-5) "і" y + 2 = 2 (x + 1)> "рівняння рядка в" кольоровій (блакитній) "точці-нахилі форми" є. • колір (білий) (x) y-y_1 = m (x-x_1) "де m - нахил і" (x_1, y_1) "точка на рядку" (A) ", задана" m = -4 "і "(x_1, y_1) = (5,4)" підставляючи ці значення в рівняння дає "y-4 = -4 (x-5) larrcolor (блакитний)" у точці-нахилі "" (B) "заданий" m = 2 "і" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (синій) у формі точки-схилу "