
Відповідь:
Тому мені також потрібно використовувати ланцюгове правило
Пояснення:
підпорядкування в правило продукту.
Відповідь:
або
Пояснення:
Ми знаємо, що продукт - це речі, помножені один на одного
Правилом продукту є
так воно і є
спрощено
Подальше спрощення
Як використовувати правило ланцюга для диференціації y = (x + 1) ^ 3?

= 3 (x + 1) ^ 2 y = u ^ 2, де u = (x + 1) y '= 3u ^ 2 * u' u '= 1 y' = 3 (x + 1) ^ 2
Як використовувати правило частки для диференціації (4x - 2) / (x ^ 2 + 1)?

4 * (- x ^ 2 + x + 1) / (x ^ 4 + 2 * x ^ 2 + 1) Диференціальний коефіцієнт дробу задається (Знаменник * Diff. Coeff. Numerator - Numerator * Diff. Coeff) Знаменника) / Знаменник ^ 2 Тут DC знаменника = 2x і DC Чисельника = 4 Підставляючи отримуємо ((x ^ 2 + 1) * 4 - (4x - 2) * 2x) / (x ^ 2 + 1) ^ 2 Розширюємо отримаємо (4 * x ^ 2 + 4 - 8 * x ^ 2 + 4 * x) / (x ^ 4 + 2 * x ^ 2 + 1) Спрощуємо, отримуємо (-4 * x ^ 2 + 4 * x + 4) / (x ^ 4 + 2 * x ^ 2 + 1), тобто 4 * (- x ^ 2 + x + 1) / (x ^ 4 + 2 * x ^ 2 + 1) Сподіваюся, що ясно
Як використовувати правило ланцюга для диференціації y = sin ^ 3 (2x + 1)?

(dy) / (dx) = 6sin ^ 2 (2x + 1) cos (2x + 1) u (x) = 2x + 1 так (du) / (dx) = 2 y = sin ^ 3 (u) має на увазі ( dy) / (du) = 3sin ^ 2 (u) cos (u) (dy) / (dx) = (dy) / (du) (du) / (dx) (dy) / (dx) = 6sin ^ 2 (2x + 1) cos (2x + 1)