Відповідь:
250000
Пояснення:
Перший - 1, останній - 1
Загалом, сума перша
Знаючи формулу суми N цілих чисел a) яка сума перших N послідовних цілих чисел, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? б) Сума перших N послідовних цілих чисел Sigma_ (k = 1) ^ N k ^ 3?
Для S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Ми маємо суму_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 сум_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 розв'язуючи для sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni, але sum_ {i = 0} ^ ni = ((n + 1) n) / 2 так sum_ {i = 0} ^ ni ^ 2 = (n +1) ^
Яка сума перших 60 послідовних непарних чисел?
897 Найпростіший спосіб зробити цю проблему - зробити це довгим шляхом. Додавши їх все вручну. 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 + 37 + 39 + 41 + 43 + 45 + 47 + 49 + 51 + 53 + 55 + 57 + 59 = 897 = 897
Які підмножини дійсних чисел відносяться до таких дійсних чисел: 1/4, 2/9, 7.5, 10.2? цілих чисел натуральних чисел ірраціональних чисел раціональних чисел tahaankkksss! <3?
Всі ідентифіковані номери є Rational; вони можуть бути виражені у вигляді дробу, що включає (тільки) 2 цілих числа, але вони не можуть бути виражені як єдині цілі числа