Відповідь:
Пояснення:
Період як sin kt, так і cos kt
Отже, окремо періоди двох термів у f (t)
Для суми поєднаний період задається
L = 13 і M = 1. Загальне значення =
Перевірити:
Покажіть, що cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Я трохи заплутаний, якщо я зробив Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), він стане негативним, оскільки cos (180 ° -тета) = - costheta в другий квадрант. Як я можу довести це питання?
Дивіться нижче. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Який період і фундаментальний період y (x) = sin (2x) + cos (4x)?
Y (x) - сума двох тригонометричних функцій. Період гріха - 2x (2pi) / 2, тобто pi або 180 градусів. Період cos4x буде (2pi) / 4, тобто pi / 2, або 90 градусів. Знайдіть LCM 180 і 90. Це було б 180. Отже, період даної функції буде pi
Який період f (t) = sin (t / 13) + cos ((13t) / 24)?
Період T = 4056pi Період T періодичної функції такий, що f (t) = f (t + T) Тут, f (t) = sin (1 / 13t) + cos (13 / 24t) Отже, f ( t + T) = sin (1/13 (t + T)) + cos (13/24 (t + T)) = sin (1 / 13t + 1 / 13T) + cos (13 / 24t + 13 / 24T) = sin (1 / 13t) cos (1 / 13T) + cos (1 / 13t) sin (1 / 13T) + cos (13 / 24t) cos (13 / 24T) -sin (13 / 24t) sin (13 / 24T) As, f (t) = f (t + T) {(cos (1 / 13T) = 1), (sin (1 / 13T) = 0), (cos (13 / 24T) = 1), ( sin (13 / 24T) = 0):} <=>, {(1 / 13T = 2pi), (13 / 24T = 2pi):} <=>, {(T = 26pi = 338pi), (T = 48 / 13pi = 48pi):} <=>, T = 4056pi