Питання # f9641

Питання # f9641
Anonim

Відповідь:

#int cos (x) / (sin ^ 2 (x) + sin (x)) "d" x = ln | sin (x) / (sin (x) +1) | + C #

Пояснення:

int cos (x) / (sin ^ 2 (x) + sin (x)) t

Замінити # u = sin (x) # і # "d" u = cos (x). Це дає

# = int ("d" u) / (u ^ 2 + u) #

# = int ("d" u) / (u (u + 1)) #

Окремі часткові частки з тих пір # 1 / (u (u + 1)) = 1 / u-1 / (u + 1) #:

# = int (1 / u-1 / (u + 1)) t

# = ln | u | -ln | u + 1 | + C #

# = ln | u / (u + 1) | + C #

Замініть назад # u = sin (x) #:

# = ln | sin (x) / (sin (x) +1) | + C #