Відповідь:
Пояснення:
Правило ланцюга:
Правило влади:
Застосовуючи ці правила:
1 Внутрішня функція,
2 Візьміть похідну зовнішньої функції за допомогою правила потужності
3 Візьміть похідну внутрішньої функції
4 Помножте
рішення:
Як диференціювати f (x) = sqrt (e ^ cot (x)) за допомогою ланцюгового правила?
F '(x) == - (sqrt (e ^ cot (x)) csc ^ 2 (x)) / 2 f (x) = sqrt (e ^ cot (x)) Щоб знайти похідну f (x) ), нам потрібно використовувати правило ланцюга. колір (червоний) "правило ланцюга: f (g (x)) '= f' (g (x)). g '(x)" Нехай u (x) = cot (x) => u' (x) = -csc ^ 2 (x) і g (x) = e ^ (x) => g '(x) = e ^ (x) .g' (u (x)) = e ^ cot (x) f (x ) = sqrt (x) => f '(x) = 1 / (2sqrt (x)) => f' (g (u (x))) = 1 / (2sqrt (e ^ cot (x)) d / dx (f (g (u (x))) = f '(g (u (x))). g' (u (x)). u '(x) = 1 / (sqrt (e ^ cot (x) ))) e ^ cot (x) .- cos ^ 2 (x) = (- e ^ cot (x) csc ^ 2x
Як диференціювати e ^ ((ln2x) ^ 2) за допомогою ланцюгового правила?
Використовуйте правило ланцюга 3 рази. Це: 2 / x * e ^ ((ln2x) ^ 2) (e ^ ((ln2x) ^ 2)) '= e ^ ((ln2x) ^ 2) * ((ln2x) ^ 2)' = e ^ ( (ln2x) ^ 2) * 2 (ln2x) '= = e ^ ((ln2x) ^ 2) * 2 * 1 / (2x) * (2x)' = e ^ ((ln2x) ^ 2) * 2 * 1 / (2x) * 2 = = 2 / х * е ^ ((ln2x) ^ 2)
Як диференціювати f (x) = sin (sqrt (arccosx ^ 2)) за допомогою ланцюгового правила?
- (xcos (sqrt (arccosx ^ 2))) / (sqrt (1-x ^ 4) * sqrt (arccosx ^ 2)) Щоб диференціювати f (x), ми повинні розкласти його на функції, потім диференціювати його за допомогою ланцюгового правила: Нехай: u (x) = arccosx ^ 2 g (x) = sqrt (x) Тоді f (x) = sin (x) Похідна композитної функції з використанням ланцюгового правила викладена наступним чином: колір (синій) (( f (g (u (x)))) '= f' (g (u (x))) * g '(u (x)) * u' (x)) Знайдемо похідну кожної функції вище: u '(x) = - 1 / sqrt (1- (x ^ 2) ^ 2) * 2x колір (синій) (u' (x) = - 1 / (sqrt (1-x ^ 4)) * 2x g ' (x) = 1 / (2sqrt (x)) Підставляючи x через