Як диференціювати f (x) = sqrt (e ^ cot (x)) за допомогою ланцюгового правила?

Як диференціювати f (x) = sqrt (e ^ cot (x)) за допомогою ланцюгового правила?
Anonim

Відповідь:

f '(x) == -# (sqrt (e ^ cot (x)). csc ^ 2 (x)) / 2 #

Пояснення:

#f (x) = sqrt (e ^ cot (x)) #

Щоб знайти похідну від f (x), потрібно використовувати правило ланцюга.

# color (red) "правило ланцюга: f (g (x)) '= f' (g (x)). g '(x)" #

Дозволяє #u (x) = cot (x) => u '(x) = - csc ^ 2 (x) #

і # g (x) = e ^ (x) => g '(x) = e ^ (x).g' (u (x)) = e ^ cot (x) #

#f (x) = sqrt (x) => f '(x) = 1 / (2sqrt (x)) => f' (g (u (x))) = 1 / (2sqrt (e ^ cot (x))) #

# d / dx (f (g (u (x))) = f '(g (u (x))). g' (u (x)). u '(x) #

=# 1 / (sqrt (e ^ cot (x))) e ^ cot (x).- cos ^ 2 (x) #

=# (- e ^ cot (x) csc ^ 2 x) / sqrt (e ^ cot (x)) #

#color (blue) "скасовує e ^ cot (x) з sqrt (e ^ cot (x)) у знаменнику" #

=-# (sqrt (e ^ cot (x)). csc ^ 2 (x)) / 2 #