Який період f (тета) = tan ((17 тета) / 12) - cos ((3 тета) / 4)?

Який період f (тета) = tan ((17 тета) / 12) - cos ((3 тета) / 4)?
Anonim

Відповідь:

# 24pi #.

Пояснення:

Вам потрібно знайти найменшу кількість періодів, щоб обидві функції пройшли ціле число хвильових циклів.

# 17/12 * n = k_0 # і # 3/4 * n = k_1 # для деяких #n, k_0, k_1 у Z + #.

Це очевидно, розглядаючи це знаменники # n # повинні бути обрані #12#. Тоді кожна з двох функцій мала ціле число хвильових циклів кожні 12 циклів хвиль.

12 хвильових циклів на # 2pi # за один хвильовий цикл дає період # 24pi #.