Це Rational Function.
Rational Function не визначено, коли знаменник стає нульовим.
Ця функція може мати будь-яку реальну вартість, крім нуля,
Де
Це Rational Function.
Rational Function не визначено, коли знаменник стає нульовим.
Ця функція може мати будь-яку реальну вартість, крім нуля,
Де
Функція f така, що f (x) = a ^ 2x ^ 2-ax + 3b для x <1 / (2a) Де a і b є постійними для випадку, коли a = 1 і b = -1 Знайти f ^ - 1 (cf і знайти свою область я знаю домен f ^ -1 (x) = діапазон f (x), і це -13/4, але я не знаю, нерівність знак напрямку?
Дивись нижче. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Діапазон: Покладіть у форму y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Мінімальне значення -13/4 Це відбувається при x = 1/2 Так діапазон ( 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Використовуючи квадратичну формулу: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x)) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 З невеликою думкою ми бачимо, що для домену у нас є необхідна інверсія : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 З домену: (-13 / 4, oo) З
Який домен і діапазон 3x-2 / 5x + 1 і домен і діапазон зворотної функції?
Домен є всім чинником, за винятком -1/5, який є діапазоном інверсії. Діапазон - це всі чинники, окрім 3/5, що є областю інверсії. f (x) = (3x-2) / (5x + 1) визначається і реальні значення для всіх x крім -1/5, так що це область f і діапазон f ^ -1 Установка y = (3x) -2) / (5x + 1) та розв'язування для x дає 5xy + y = 3x-2, тому 5xy-3x = -y-2, а отже (5y-3) x = -y-2, так, нарешті, x = (- y-2) / (5y-3). Ми бачимо, що y! = 3/5. Отже, діапазон f - це всі дійсності, окрім 3/5. Це також є областю f ^ -1.
Якщо f (x) = 3x ^ 2 та g (x) = (x-9) / (x + 1), а x! = - 1, то що б f (g (x)) дорівнює? g (f (x))? f ^ -1 (x)? Яким буде домен, діапазон і нулі для f (x)? Яким буде домен, діапазон і нулі для g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x у RR}, R_f = {f (x) у RR; f (x)> = 0} D_g = {x у RR; x! = - 1}, R_g = {g (x) у RR; g (x)! = 1}