Якщо
Величина декартових координат
Дозволяє
Величина
Кут
Але оскільки точка знаходиться в четвертому квадранті, то ми повинні додати
Зауважимо, що кут задається в радіанній мірі.
Зверніть увагу, що відповідь
Як перетворювати полярні координати (-2, (7pi) / 8) в прямокутні координати?
(1.84, -0.77) З урахуванням (r, тета), (x, y) можна знайти шляхом (rcostheta, rsintheta) r = -2 тета = (7pi) / 8 (x, y) -> (- 2cos ( (7pi) / 8), - 2sin ((7pi) / 8) ~~ (1.84, -0.77)
Як конвертувати (11, -9) у полярні координати?
(sqrt202, tan ^ -1 (-9/11) + 2pi) або (14,2,5,60 ^ c) (x, y) -> (r, тета); (r, тета) = (sqrt (x ^ 2 +) y ^ 2), tan ^ -1 (y / x)) r = sqrt (x ^ 2 + y ^ 2) = sqrt (11 ^ 2 + (- 9) ^ 2) = sqrt (121 + 81) = sqrt202 ~ ~ 14.2 theta = tan ^ -1 (-9/11) Однак, (11, -9) знаходиться в квадранті 4, і тому ми повинні додати 2pi до нашої відповіді. тета = tan ^ -1 (-9/11) + 2pi ~~ 5.60 ^ c (sqrt202, tan ^ -1 (-9 / 11) + 2pi) або (14.2,5.60 ^ c)
Як перетворити декартові координати (10,10) в полярні координати?
Декартові: (10; 10) Полярний: (10sqrt2; pi / 4) Проблема представлена наведеним нижче графіком: У 2D-просторі точка знайдена з двома координатами: декартові координати - вертикальне і горизонтальне положення (x; y ). Полярні координати - відстань від походження і нахилу з горизонтальною (R, альфа). Три вектори vecx, vecy і vecR створюють правильний трикутник, в якому можна застосувати теорему піфагора і тригонометричні властивості. Таким чином, ви знайдете: R = sqrt (x ^ 2 + y ^ 2) alpha = cos ^ (- 1) (x / R) = sin ^ (- 1) (y / R) У вашому випадку, тобто: R = sqrt (10 ^ 2 + 10 ^ 2) = sqrt (100 + 100) = sqrt200 = 10sqrt2 a