Відповідь:
Дивись нижче
Пояснення:
Ліва сторона:
Як ви доводите cos ^ 4theta-sin ^ 4theta = cos2theta?
Ми будемо використовувати rarrsin ^ 2x + cos ^ 2x = 1, a ^ 2-b ^ 2 = (a + b) (a-b) і cos ^ 2x-sin ^ 2x = cos2x. LHS = cos ^ 4x-sin ^ 4x = (cos ^ 2x) ^ 2- (sin ^ 2x) ^ 2 = (cos ^ 2x + sin ^ 2x) * (cos ^ 2x-sin ^ 2x) = 1 * cos2x = cos2x = RHS
Як ви доводите csc ^ 2x-1 = (csc ^ 2x) (cos ^ 2x)?
Див. нижче Використання властивості cot ^ 2x = csc ^ 2x-1 Ліва сторона: = csc ^ 2x-1 = ліжечко ^ 2x = cos ^ 2x / sin ^ 2x = 1 / sin ^ 2x cos ^ 2 x = csc ^ 2x cos ^ 2x = Права сторона
Як ви доводите csctheta / sintheta = csc ^ 2theta?
Легко! Тільки пам'ятайте, що 1 / sin theta = csc theta, і ви побачите, що csc theta / sin theta = csc ^ 2 theta Щоб довести, що csc theta / sin theta = csc ^ 2 theta, ми повинні пам'ятати, що csc theta = 1 / sin тета Доказ: csc theta / sin theta = csc ^ 2 theta (1 / sin тета) / sin theta = csc ^ 2 theta 1 / sin theta * 1 / sin theta = csc ^ 2 theta 1 / sin ^ 2 тета = csc ^ 2 тета Отже, csc ^ 2 тета = csc ^ 2 Там ви йдете :)