Як диференціювати f (x) = (3x ^ 3-2x ^ 2 + 5) ^ 331?

Як диференціювати f (x) = (3x ^ 3-2x ^ 2 + 5) ^ 331?
Anonim

Відповідь:

# (dy) / (dx) = 331 (9x ^ 2-4x) (3x ^ 3-2x ^ 2 + 5) ^ 330 #

Пояснення:

Використовуючи правило ланцюга: # (dy) / (dx) = (dy) / (du) * (du) / (dx) #

В цьому випадку, # y = (3x ^ 3-2x ^ 2 + 5) ^ 331 #

Дозволяє # u = 3x ^ 3-2x ^ 2 + 5 #, потім # (dy) / (du) = 331u ^ 330 # і # (du) / (dx) = 9x ^ 2-4x #

Тому # (dy) / (dx) = 331u ^ 330 * (9x ^ 2-4x) #

# = 331 (9x ^ 2-4x) (3x ^ 3-2x ^ 2 + 5) ^ 330 #