Відповідь:
Відповідь
Пояснення:
Для обчислення вектора, перпендикулярного двом іншим векторам, необхідно обчислити перехресний продукт
Дозволяє
Перехресний продукт задається визначником
Щоб перевірити це
Ми робимо точковий продукт.
Як точкових продуктів
Для обчислення одиничного вектора ми ділимо на модуль
Що таке одиничний вектор, ортогональний площині, що містить (i + j - k) і (i - j + k)?
Ми знаємо, що якщо vec C = vec A × vec B, то vec C перпендикулярно обом vec A і vec B Отже, нам потрібно просто знайти крос-продукт даних двох векторів. Так, (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Отже, одиничний вектор є (-2 (hatk +) hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Що таке одиничний вектор, ортогональний площині, що містить <0, 4, 4> і <1, 1, 1>?
Відповідь = / 0,1 / sqrt2, -1 / sqrt2 that Вектор, перпендикулярний 2 інших векторів, задається перехресним продуктом. ,4 0,4,4 〈x 〈1,1,1〉 = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) =, 0,4, -4〉 Верифікація за допомогою точкових продуктів ,4 0,4,4 〈. 〈0,4, -4〉 = 0 + 16-16 = 0 ,1 1,1,1 〈., 0,4, -4〉 = 0 + 4-4 = 0 Модуль 〈0,4, -4〉 = 〈0,4, - 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Одиничний вектор отримують діленням вектора на модуль = 1 / (4sqrt2), 0,4, -4〉 = 〈0,1 / sqrt2, -1 / sqrt2
Що таке одиничний вектор, ортогональний площині, що містить (20j + 31k) і (32i-38j-12k)?
Одиничний вектор == 1 / 1507.8 <938,992, -640> Вектор, ортогональний 2 векторам в площині, обчислюється з визначником | (veci, vecj, veck), (d, e, f), (g, h, i) | де, d, e, f〉 і, g, h, i〉 - два вектори Тут ми маємо veca = 0 0,20,31〉 і vecb =, 32, -38, -12〉 Тому, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = ,9 938,992, -640〉 = vecc продукти 〈938,992, -640〉. 0 0,20,31〉 = 938 * 0 + 992 * 20-640 * 31 = 0 38 938,992, -640 〈. 〈32, -38, -12〉 = 938 * 32- 9