Відповідь:
Просто скористайтеся перевагами
Відповідь:
Пояснення:
Яке граничне визначення похідної функції y = f (x)?
Є кілька способів її написання. Всі вони захоплюють ту ж ідею. Для y = f (x) похідна y (по відношенню до x) є y '= dy / dx = lim_ (Deltax rarr0) (Delta y) / (Delta x) f' (x) = lim_ (Deltax rarr0) ) (f (x + Delta x) -f (x)) / (Delta x) f '(x) = lim_ (hrarr0) (f (x + h) -f (x)) / (h) f' ( x) = lim_ (urarrx) (f (u) -f (x)) / (ux)
Як ви знайдете f '(x), використовуючи визначення похідної для f (x) = sqrt (9 - x)?
F '(x) = - 1 / (2sqrt (9-x)) Завдання у формі f (x) = F (g (x)) = F (u) Ми повинні використовувати правило ланцюга. Правило ланцюга: f '(x) = F' (u) * u 'Ми маємо F (u) = sqrt (9-x) = sqrt (u) і u = 9-x Тепер ми повинні їх вивести: F' (u) = u ^ (1/2) '= 1 / 2u ^ (- 1/2) Напишіть вираз як "досить", і ми отримаємо F' (u) = 1/2 * 1 / (u ^ (1/2)) = 1/2 * 1 / sqrt (u) ми повинні обчислити u 'u' = (9-x) '= - 1 Єдине, що залишилося зараз - це заповнити все, що ми маємо, формула f '(x) = F' (u) * u '= 1/2 * 1 / sqrt (u) * (- 1) = - 1/2 * 1 / sqrt (9-x)
Як використовувати граничне визначення похідної для знаходження похідної y = -4x-2?
-4 Визначення похідної визначається наступним чином: lim (h-> 0) (f (x + h) -f (x)) / h Давайте застосуємо вищенаведену формулу на задану функцію: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0) ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Спрощення за h = lim (h-> 0) (- 4) = -4