Якщо f (x) = cos5 x та g (x) = e ^ (3 + 4x), то як ви диференціюєте f (g (x)) за допомогою правила ланцюга?

Якщо f (x) = cos5 x та g (x) = e ^ (3 + 4x), то як ви диференціюєте f (g (x)) за допомогою правила ланцюга?
Anonim

Відповідь:

Нотації Лейбніца можуть стати в нагоді.

Пояснення:

#f (x) = cos (5x) #

Дозволяє #g (x) = u #. Тоді похідна:

# (f (g (x))) '= (f (u))' = (df (u)) / dx = (df (u)) / (dx) (du) / (du) = (df (u)) / (du) (du) / (dx) = #

# = (dcos (5u)) / (du) * (d (e ^ (3 + 4x))) / (dx) = #

# = - sin (5u) * (d (5u)) / (du) * e ^ (3 + 4x) (d (3 + 4x)) / (dx) = #

# = - sin (5u) * 5 * e ^ (3 + 4x) * 4 = #

# = - 20sin (5u) * e ^ (3 + 4x) #