Відповідь:
Використовуйте
Пояснення:
Правило ланцюга:
Примітка: у цьому випадку правило ланцюга не має значення. Однак, якби існувала інша функція, в якій знаменник, який не мав похідної, дорівнював 1, процес диференціації був би більш складним.
Як знайти похідну функції зворотного тригера f (x) = arcsin (9x) + arccos (9x)?
Тут '/ так я роблю це: - Я дозволю деякому "" тета = arcsin (9x) "" і деяким "" альфа = arccos (9x) Так я отримую, "" sintheta = 9x "" і "" cosalpha = 9x я диференціюю як неявно так: => (costheta) (d (тета)) / (dx) = 9 "" => (d (тета)) / (dx) = 9 / (costheta) = 9 / (sqrt (1-sin ^ 2theta)) = 9 / (sqrt (1- (9x) ^ 2) - Далі, я диференціюю cosalpha = 9x => (- sinalpha) * (d (alpha)) / (dx) = 9 "" => (d (альфа)) / (dx) = - 9 / (sin (alpha)) = - 9 / (sqrt (1-cosalpha)) = - 9 / sqrt (1- (9x) ^ 2) У цілому, "" f (x) = тета + а
Знайти похідну функції?
Див. Відповідь нижче: