Відповідь:
Пояснення:
червоні терміни дорівнюють 1
з теореми Піфагора
також, блакитні умови дорівнюють 1
Тому
Зелені терміни разом дорівнюють 0
Так що тепер у вас є
Правда
Відповідь:
Пояснення:
# "використовуючи" колір (синій) "тригонометричний ідентифікатор" #
# • колір (білий) (x) sin ^ 2x + cos ^ 2x = 1 #
# "розгляньте ліву сторону" #
# "розширити кожен фактор за допомогою FOIL" #
# (sinx-cosx) ^ 2 = sin ^ 2xпорушення (-2cosxinx) + cos ^ 2x #
# (sinx + cosx) ^ 2 = гріх ^ 2xпомилка (+ 2кокссинкс) + cos ^ 2x #
# "додавання правих сторін дає" #
# 2sin ^ 2x + 2cos ^ 2x #
# = 2 (sin ^ 2x + cos ^ 2x) #
# = 2xx1 = 2 = "права сторона" rArr "перевірена" #
Чи може хтось допомогти перевірити цю ідентифікацію трикутника? (Sinx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Це підтверджується нижче: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (скасувати ((sinx + cosx) ) (sinx + cosx)) / (скасувати ((sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => колір (зелений) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2
Як я можу довести, що це ідентичність? Дякую. (1-sin ^ 2 (x / 2)) / (1 + sin ^ 2 (x / 2)) = (1 + cosx) / (3-cosx)
LHS = (1-sin ^ 2 (x / 2)) / (1 + sin ^ 2 (x / 2) = (cos ^ 2 (x / 2)) / (1 + 1-cos ^ 2 (х / 2) )) = (2cos ^ 2 (x / 2)) / (2-2cos ^ 2 (x / 2)) = (1 + cosx) / (4- (1 + cosx)) = (1 + cosx) / ( 3-cosx) = RHS
Доведіть: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Доведення нижче за допомогою кон'югатів і тригонометричної версії теореми Піфагора. Частина 1 sqrt ((1-cosx) / (1 + cosx)) колір (білий) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) колір (білий) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) колір (білий) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Частина 2 Так само sqrt ((1 + cosx) / (1-cosx) колір (білий) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Частина 3: Комбінування термінів sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) колір (білий) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 +