Відповідь:
Пояснення:
Нехай послідовні цілі числа
Різниця їх взаємних доходів дорівнює
Спрощуйте ліву частину рівняння
Чисельники дробів рівні, так як знаменники
Фактор його
Вирішіть для значень
Розглянемо позитивне значення, щоб отримати правильну відповідь
Отже, цілі числа
Твір двох послідовних цілих чисел дорівнює 24. Знайдіть два цілих числа. Відповідайте у вигляді парних точок з найнижчим з двох цілих чисел. Відповідь?
Два послідовних парних цілих числа: (4,6) або (-6, -4) Нехай, колір (червоний) (n і n-2 є двома послідовними цілими числами, де колір (червоний) (n inZZ Продукт n і n-2 дорівнює 24, тобто n (n-2) = 24 => n ^ 2-2n-24 = 0 Тепер, [(-6) + 4 = -2 і (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 або n + 4 = 0 ... до [n inZZ] => колір (червоний) (n = 6 або n = -4 (i) колір (червоний) (n = 6) => колір (червоний) (n-2) = 6-2 = колір (червоний) (4) Отже, два послідовних парних цілих числа: (4,6) (ii)) колір (червоний) (n = -4) => колір (червоний) (n-2) = -4-2 = колір (червоний
Добуток двох послідовних непарних чисел становить 29 менше, ніж 8-кратна їх сума. Знайдіть два цілих числа. Відповідь у вигляді парних точок з найнижчим з двох цілих чисел спочатку?
(13, 15) або (1, 3) Нехай x і x + 2 є непарними послідовними числами, тоді, відповідно до питання, маємо (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 або 1 Тепер, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Цифри (13, 15). СПРАВИ II: x = 1:. x + 2 = 1+ 2 = 3:. Цифри (1, 3). Отже, як тут утворюються два випадки; пара чисел може бути як (13, 15), так і (1, 3).
Знаючи формулу суми N цілих чисел a) яка сума перших N послідовних цілих чисел, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? б) Сума перших N послідовних цілих чисел Sigma_ (k = 1) ^ N k ^ 3?
Для S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Ми маємо суму_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 сум_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 розв'язуючи для sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni, але sum_ {i = 0} ^ ni = ((n + 1) n) / 2 так sum_ {i = 0} ^ ni ^ 2 = (n +1) ^