Відповідь:
Пояснення:
Гаразд. У нас є:
Давайте ігноруємо
Відповідно до Піфагорійської Ідентичності,
Тепер, коли ми знаємо це, ми можемо написати:
У градусах,
Відповідь:
Пояснення:
Дано,
Якщо 2sin тета + 3cos тета = 2 довести, що 3sin тета - 2 cos тета = ± 3?
Дивіться нижче. З урахуванням rarr2sinx + 3cosx = 2 rarr2sinx = 2-3cosx rarr (2sinx) ^ 2 = (2-3cosx) ^ 2 rarr4sin ^ 2x = 4-6cosx + 9cos ^ 2x rarrcancel (4) -4cos ^ 2x = скасувати (4) - 6cosx + 9cos ^ 2x rarr13cos ^ 2x-6cosx = 0 rarrcosx (13cosx-6) = 0 rarrcosx = 0,6 / 13 rarrx = 90 ° Тепер, 3sinx-2cosx = 3sin90 ° -2cos90 ° = 3
Доказ: - sin (7 тета) + sin (5 тета) / sin (7 тета) -син (5 тета) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Покажіть, що (1 + cos theta + i * sin theta) ^ n + (1 + cos тета - i * sin тета) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * тета / 2)?
Дивіться нижче. Нехай 1 + costheta + isintheta = r (cosalpha + isinalpha), тут r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (тета / 2) ) -2) = 2cos (тета / 2) і tanalpha = sintheta / (1 + costheta) == (2sin (тета / 2) cos (тета / 2)) / (2cos ^ 2 (тета / 2)) = tan (тета / 2) або альфа = тета / 2, потім 1 + costheta-isintheta = r (cos (-альфа) + ісін (-альфа)) = r (косальфа-ісіналфа) і ми можемо написати (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n з використанням теореми DE MOivre як r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2 ^