Трикутник А має площу 3 і дві сторони довжини 5 і 4. Трикутник B подібний до трикутника A і має сторону довжиною 14. Які максимальні та мінімальні області трикутника B?

Трикутник А має площу 3 і дві сторони довжини 5 і 4. Трикутник B подібний до трикутника A і має сторону довжиною 14. Які максимальні та мінімальні області трикутника B?
Anonim

Відповідь:

Максимальна площа 36.75 і Мінімальна площа 23.52

Пояснення:

#Delta s A і B # подібні.

Щоб отримати максимальну площу #Delta B #, сторона 14 з #Delta B # повинні відповідати стороні 4 з #Delta A #.

Сторони мають співвідношення 14: 4

Звідси райони будуть у співвідношенні #14^2: 4^2 = 196: 9#

Максимальна площа трикутника #B = (3 * 196) / 16 = 36,75 #

Аналогічно отримати мінімальну площу, сторона 5 з #Delta A # буде відповідати стороні 14 з #Delta B #.

Сторони мають співвідношення # 14: 5# і райони #196: 25#

Мінімальна площа #Delta B = (3 * 196) / 25 = 23,52 #