Які локальні екстремуми f (x) = ((x-2) (x-4) ^ 3) / (x ^ 2-2)?

Які локальні екстремуми f (x) = ((x-2) (x-4) ^ 3) / (x ^ 2-2)?
Anonim

Відповідь:

# X = -5 #

Пояснення:

#f (x) = (x-2) (x-4) ^ 3 / (x ^ 2-2) #

# x ^ 2-2 = (x + 2) (x-2) #

Таким чином, функція стане:

#f (x) = (x-4) ^ 3 / (x + 2) #

Тепер

#f '(x) = d / dx (x-4) ^ 3 / (x + 2) #

#f '(x) = 3 (x + 2) (x-4) ^ 2- (x-4) ^ 3 / (x + 2) ^ 2 #

Для локальної точки екстремуму

#f '(x) = 0 #

Тому

# 3 (x + 2) (x-4) ^ 2- (x-4) ^ 3 / (x + 2) ^ 2 = 0 #

# 3 (x + 2) (x-4) ^ 2- (x-4) ^ 3 = 0 #

# 3 (x + 2) (x-4) ^ 2 = (x-4) ^ 3 #

# 3x + 6 = x-4 #

# 2x = -10 #

# x = -5 #