(x + 1) (x + 3) (x + 6) (x + 4) = 72 .. Знайти x?

(x + 1) (x + 3) (x + 6) (x + 4) = 72 .. Знайти x?
Anonim

Відповідь:

# x = 0 #

Пояснення:

Дана проблема

# (x + 1) (x + 3) (x + 6) (x + 4) = 72 #

Ви можете використовувати FOIL, щоб розширити проблему на множення двох поліномів

#<=>#

# (x ^ 2 + 4x + 3) (x ^ 2 + 10x + 24) = 72 #

#<=>#Подальше спрощення

# x ^ 4 + 10x ^ 3 + 24x ^ 2 + 4x ^ 3 + 10x ^ 2 + 96x + 3x ^ 2 + 30x + 72 = 72 #

Тут багато термінів, і можна було б сподіватись на те, щоб об'єднати подібні терміни для подальшого спрощення … але є тільки один термін, який не включає # x # і цей термін #72#

#therefore x = 0 #

Відповідь:

#:. x = 0, x = -7, x = (- 7 + -isqrt23) /2.

Пояснення:

# (x + 1) (x + 3) (x + 6) (x + 4) = 72. #

#:. {(x + 1) (x + 6)} {(x + 3) (x + 4)} = 72. #

#:. (x ^ 2 + 7x + 6) (x ^ 2 + 7x + 12) = 72.

#:. (y + 6) (y + 12) = 72, ……… y = x ^ 2 + 7x.

#:. y ^ 2 + 18y + 72-72 = 0, тобто y ^ 2 + 18y = 0. #

#:. y (y + 18) = 0.

#:. y = 0, або y + 18 = 0. #

#:. x ^ 2 + 7x = 0, або, x ^ 2 + 7x + 18 = 0. #

#:. x = 0, або, x = -7, або, x = - 7 + -sqrt {7 ^ 2-4 (1) (18)} / (2 * 1), #

#:. x = 0, x = -7, x = (- 7 + -isqrt23) /2.

Відповідь:

# x_1 = -7 # і # x_2 = 0 #. З першого вони є # x_3 = (7 + sqrt (23) * i) / 2 # і # x_4 = (7-sqrt (23) * i) / 2 #.

Пояснення:

Я використав різницю ідентичності квадратів.

# (x + 1) * (x + 6) * (x + 3) * (x + 4) = 72 #

# (x ^ 2 + 7x + 6) * (x ^ 2 + 7x + 12) = 72 #

# (x ^ 2 + 7x + 9) ^ 2-3 ^ 2 = 72 #

# (x ^ 2 + 7x + 9) ^ 2 = 81 #

# (x ^ 2 + 7x + 9) ^ 2-9 ^ 2 = 0 #

# (x ^ 2 + 7x + 9 + 9) * (x ^ 2 + 7x + 9-9) = 0 #

# (x ^ 2 + 7x + 18) * (x ^ 2 + 7x) = 0 #

# (x ^ 2 + 7x + 18) * x * (x + 7) = 0 #

З другого і третього множника є корені рівнянь # x_1 = -7 # і # x_2 = 0 #. З першого вони є # x_3 = (7 + sqrt (23) * i) / 2 # і # x_4 = (7-sqrt (23) * i) / 2 #.