Як інтегрувати int sqrt (3 (1-x ^ 2)) dx з використанням тригонометричної заміни?

Як інтегрувати int sqrt (3 (1-x ^ 2)) dx з використанням тригонометричної заміни?
Anonim

Відповідь:

#int sqrt (3 (1-x ^ 2)) dx = sqrt3 / 4sin2theta + sqrt3 / 2 тета + C #

Пояснення:

# x = sintheta, dx = cos theta d theta #

#intsqrt (3 (1-sin ^ 2theta)) * cos тета d тета = intsqrt (3 (cos ^ 2theta)) cos theta d theta #

# = intsqrt3 cos theta cos theta d theta #

# = sqrt 3intcos ^ 2 theta d theta #

# = sqrt3 int1 / 2 (cos2 тета + 1) d тета #

# = sqrt3 / 2 int (cos2 тета + 1) d тета #

# = sqrt3 / 2 1/2 sin2theta + тета #

# = sqrt3 / 4sin2theta + sqrt3 / 2 тета + C #