Довжина тіні будівлі становить 29 м. Відстань від вершини будівлі до кінця тіні становить 38 м. Як ви знаходите висоту будівлі?
Використовуйте теорему Піфагора h = 24,6 м. Теорема стверджує, що - у прямокутному трикутнику квадрат гіпотенузи такий же, як сума квадратів інших двох сторін. c ^ 2 = a ^ 2 + b ^ 2 У питанні зображується грубий, прямокутний трикутник. так 38 ^ 2 = 29 ^ 2 + h (висота) ^ 2 h ^ 2 = 38 ^ 2-29 ^ 2 h ^ 2 = 1444-841 h ^ 2 = 603 h = sqrt603 h = 24.55605832 h = 24.6 надія, яка допомогла !
Яка довжина найкоротшої драбини, яка досягне від землі до огорожі, до стіни будівлі, якщо огорожа площею 8 футів проходить паралельно високій будівлі на відстані 4 фути від будівлі?
Увага: Ваш вчитель математики не сподобається цьому методу вирішення! (але це ближче до того, як це буде зроблено в реальному світі). Зауважимо, що якщо x дуже малий (так що сходи майже вертикальний), то довжина сходів буде майже оо, а якщо x дуже велика (так що сходи майже горизонтальна), то довжина трапа (знову) буде майже Якщо ми почнемо з дуже малого значення для x і поступово збільшуємо його, то довжина драбини (спочатку) стане коротшою, але в якийсь момент вона знову повинна буде збільшуватися. Тому ми можемо знайти значення брекетингу "низький Х" і "високий Х", між якими довжина драбини досягне м
Яка швидкість зміни ширини (в футах / сек), коли висота становить 10 футів, якщо висота в цей момент зменшується зі швидкістю 1 фут / сек. Прямокутник має мінливу висоту і мінливу ширину , але висота і ширина змінюються так, що площа прямокутника завжди 60 квадратних футів?
Швидкість зміни ширини з часом (dW) / (dt) = 0.6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) ) = - 1 "ft / s" So (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Так (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Отже, при h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "фут / с"