Відповідь:
Доказ нижче
Пояснення:
Розширення кубічної
Ідентичність:
Чи може хтось допомогти перевірити цю ідентифікацію трикутника? (Sinx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Це підтверджується нижче: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (скасувати ((sinx + cosx) ) (sinx + cosx)) / (скасувати ((sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => колір (зелений) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2
Доведіть: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Доведення нижче за допомогою кон'югатів і тригонометричної версії теореми Піфагора. Частина 1 sqrt ((1-cosx) / (1 + cosx)) колір (білий) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) колір (білий) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) колір (білий) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Частина 2 Так само sqrt ((1 + cosx) / (1-cosx) колір (білий) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Частина 3: Комбінування термінів sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) колір (білий) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 +
Як перевірити [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Доказ нижче Розширення a ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), і ми можемо використовувати це: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = ((sinB + cosB) (sin ^ 2B-sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (ідентичність: sin ^ 2x + cos ^ 2x = 1) = 1-sinBcosB