Що таке квадратний корінь з 2i?

Що таке квадратний корінь з 2i?
Anonim

#sqrt {2i} = {1 + i, -1-i} #

Давайте розглянемо деякі деталі.

Дозволяє # z = sqrt {2i} #.

(Примітка # z # - комплексні числа.)

згортанням

#Rightarrow z ^ 2 = 2i #

за допомогою експоненційної форми # z = re ^ {i theta} #, #Rightarrow r ^ 2e ^ {i (2theta)} = 2i = 2e ^ {i (pi / 2 + 2npi)} #

#Rightarrow {(r ^ 2 = 2 Rightarrow r = sqrt {2}), (2тета = pi / 2 + 2npi Rightarrow тета = pi / 4 + npi):} #

Тому, # z = sqrt {2} e ^ {i (pi / 4 + npi)} #

формулою Еула: # e ^ {i theta} = cos theta + isin theta #

#Rightarrow z = sqrt {2} cos (pi / 4 + npi) + isin (pi / 4 + npi) #

# = sqrt {2} (pm1 / sqrt {2} pm1 / sqrt {2} i) = pm1pmi #

Я залишив наступне оригінальне повідомлення на всякий випадок, якщо комусь це потрібно.

# (2i) ^ (1/2) # = #(2)^(1/2)# # (i) ^ (1/2) #,

# (i) ^ (1/2) # = -1

# (2i) ^ (1/2) # = #(2)^(1/2)# x -1

#(2)^(1/2)# = 1.41

# (2i) ^ (1/2) # = 1,41 х -1 = -1,41