
Відповідь:
Пояснення:
Якщо радіус r, то швидкість зміни r відносно часу t,
Об'єм як функція радіуса r для сферичного об'єкта
Ми повинні знайти
Тепер,
Але
Обсяг куба збільшується зі швидкістю 20 кубічних сантиметрів за секунду. Наскільки швидко, в квадратних сантиметрах в секунду, площа поверхні куба збільшується в момент, коли кожен край куба має 10 сантиметрів?

Вважаємо, що край куба змінюється з часом, так що це функція часу l (t); тому:
Вода, що витікає на підлогу, утворює круговий басейн. Радіус басейну збільшується зі швидкістю 4 см / хв. Як швидко збільшується площа басейну, коли радіус становить 5 см?

40pi "cm" ^ 2 "/ min" По-перше, ми повинні почати з рівняння, яке ми знаємо, що стосуються площі кола, басейну і його радіусу: A = pir ^ 2 Однак, ми хочемо побачити, як швидко область басейн зростає, що дуже схоже на швидкість, яка дуже нагадує похідну. Якщо взяти похідну від A = pir ^ 2 відносно часу, t, то видно, що: (dA) / dt = pi * 2r * (dr) / dt (Не забувайте, що правило ланцюга застосовується праворуч боку, з r ^ 2 - це схоже на неявну диференціацію.) Отже, ми хочемо визначити (dA) / dt. Питання сказало нам, що (dr) / dt = 4, коли він сказав "радіус басейну зростає зі швидкістю 4 см / хв"
Розливання нафти з розривного танкера поширюється по колу на поверхні океану. Площа розливу збільшується зі швидкістю 9π м² / хв. Наскільки швидко радіус розливу збільшується, коли радіус 10 м?

Dr | _ (r = 10) = 0.45м // min. Оскільки площа кола є A = pi r ^ 2, ми можемо взяти диференціал на кожній стороні, щоб отримати: dA = 2підр Отже, радіус змінюється зі швидкістю dr = (dA) / (2pir) = (9pi) / (2pir) ) Отже, dr | _ (r = 10) = 9 / (2xx10) = 0.45м // min.