
По-перше, не всі квадратні корені ірраціональні. Наприклад,
Перш ніж продовжити, давайте розглянемо, що це означає мати ірраціональне число - це повинно бути значення, яке йде назавжди в десятковій формі і не є шаблоном, наприклад
Наприклад,
Повернемося до вашого питання. Деякі квадратні коріння, як
Отже, якщо квадратний корінь не є ідеальним квадратом, він є ірраціональним числом
Це приклад теплопередачі, якою? + Приклад

Це конвекція. Dictionary.com визначає конвекцію як "передачу тепла циркуляцією або рухом нагрітих частин рідини або газу". Конвекція не вимагає гір, але в цьому прикладі є.
Які всі квадратні коріння 100/9? + Приклад

10/3 і -10/3 По-перше, відзначивши, що sqrt (100/9) = sqrt (100) / sqrt (9) Відзначається, що числа у верхній частині дробу (чисельник) і нижній частині дробу (знаменник) - це обидва "хороші" квадратні числа, для яких легко знайти коріння (як ви, звичайно, знаєте, 10 і 9, відповідно!). Питання, яке насправді перевіряє (і ключ до цього пояснюється словом "все"), це чи знаєте ви, що число завжди матиме два квадратні корені. Тобто квадратний корінь з x ^ 2 є плюс або мінус x Змішуючи, за згодою (принаймні іноді, наприклад у стандартному способі вираження квадратичної формули) знак квадратного кореня викори
Чому існують ірраціональні числа? + Приклад

Хоча звичайна людина може знайти багато речей в математиці як незрозумілі або важко зрозумілі, вони існують у певній формі і служать меті розуміння природи. Виявляється, що питанням «чому існують ірраціональні числа?» Є питання, чи існують в природі ірраціональні числа. Ми не маємо сумнівів щодо натуральних чисел, оскільки об'єкти враховуються у натуральних числах і як такі вважаються натуральними числами. Ми розуміємо, що мається на увазі під 1/2 батона хліба, 3/8 піци і так далі. Отже, можливо, немає ніяких питань щодо фракцій. Одним з прикладів є sqrt2, і ми розуміємо sqrt2, оскільки він є довжиною діагона