Відповідь:
Пояснення:
Рівняння лінії в
#color (блакитний) "форма точки-схилу" # є.
#color (червоний) (бар (ul (| (колір (білий) (2/2) колір (чорний) (y-y_1 = m (x-x_1)) колір (білий) (2/2) |))) # де m являє собою нахил і
# (x_1, y_1) "точка на рядку" # Для обчислення m використовуйте
#color (синій) "формула градієнта" #
#color (червоний) (бар (ul (| колір (білий) (2/2) колір (чорний) (m = (y_2-y_1) / (x_2-x_1)) колір (білий) (2/2) |))) # де
# (x_1, y_1), (x_2, y_2) "2 координатні точки" # 2 точки тут (-1, -4) і (-2, 3)
дозволяє
# (x_1, y_1) = (- 1, -4) "і" (x_2, y_2) = (- 2,3) #
# rArrm = (3 - (- 4)) / (- 2 - (- 1)) = 7 / -1 = -7 Використовуючи одну з 2-х заданих балів
# (x_1, y_1) #
# "Використання" (-1, -4) "і" m = -7 "
#y - (- 4) = - 7 (x - (- 1)) #
# rArry + 4 = -7 (x + 1) larrcolor (червоний) "рівняння у формі точки-схилу" # Розподіл і спрощення цього рівняння дає нам альтернативну версію для рівняння лінії.
# y + 4 = -7x-7 #
# rArry = -7x-11larrcolor (червоний) "рівняння у формі перекриття нахилу" #
Яке рівняння лінії, що проходить через (0, -1) і перпендикулярно лінії, що проходить через наступні точки: (8, -3), (1,0)?
7x-3y + 1 = 0 Нахил лінії, що з'єднує дві точки (x_1, y_1) і (x_2, y_2), задається (y_2-y_1) / (x_2-x_1) або (y_1-y_2) / (x_1-x_2) ) Оскільки точки (8, -3) і (1, 0), нахил лінії, що з'єднує їх, буде задано (0 - (- 3)) / (1-8) або (3) / (- 7) тобто -3/7. Продукт нахилу двох перпендикулярних ліній завжди -1. Отже, нахил лінії, перпендикулярний до нього, буде 7/3 і, отже, рівняння у формі нахилу може бути записано як y = 7 / 3x + c Оскільки це проходить через точку (0, -1), ставлячи ці значення у вище рівняння, отримуємо -1 = 7/3 * 0 + c або c = 1 Отже, бажане рівняння буде y = 7 / 3x + 1, спрощуючи яке дає відповідь
Яке рівняння лінії, що проходить через (0, -1) і перпендикулярно лінії, що проходить через наступні точки: (13,20), (16,1)?
Y = 3/19 * x-1 Нахил лінії проходить через (13,20) і (16,1) m_1 = (1-20) / (16-13) = - 19/3 Ми знаємо стан perpedicularity між двома лініями є добуток їх схилів, рівних -1: .m_1 * m_2 = -1 або (-19/3) * m_2 = -1 або m_2 = 3/19 Отже, лінія, що проходить через (0, -1) ) y + 1 = 3/19 * (x-0) або y = 3/19 * x-1 графік {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Яке рівняння лінії, що проходить через (0, -1) і перпендикулярно лінії, що проходить через наступні точки: (-5,11), (10,6)?
Y = 3x-1 "рівняння прямої задається" y = mx + c ", де m = градієнт &" c = "y-перехоплення" "ми хочемо, щоб градієнт лінії перпендикуляр до лінії" "проходячи через задані точки" (-5,11), (10,6) нам знадобиться "" m_1m_2 = -1 для заданої лінії m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2) -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3, так що необхідний eqn. стає y = 3x + c проходить через "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1