Що таке ортоцентр трикутника з кутами в (7, 8), (3, 4), і (8, 3) #?

Що таке ортоцентр трикутника з кутами в (7, 8), (3, 4), і (8, 3) #?
Anonim

Нехай координати трьох вершин трикутника ABC

#A -> (7,8) "" B -> (3,4) "" C -> (8,3) #

Нехай координати#color (червоний) ("Ortho center O" -> (h, k)) #

#m_ (AB) -> "Нахил AB" = ((8-4)) / ((7-3)) = 1 #

#m_ (BC) -> "Схил БК" = ((4-3)) / ((3-8)) = - 1/5 #

#m_ (CO) -> "Нахил CO" = ((k-3)) / ((h-8)) #

#m_ (AO) -> "Нахил АО" = ((k-8)) / ((h-7)) #

О, будучи ортоцентром, пряма лінія, що проходить через C і O, буде перпендикулярна AB, Тому #m_ (CO) xxm_ (AB) = - 1 #

# => ((k-3)) / ((h-8)) xx 1 = -1 #

# => k = -h + 11 …. (1) #

Якщо ортоцентр, пряма лінія, що проходить через A і O, буде перпендикулярною до BC, Тому #m_ (AO) xxm_ (BC) = - 1 #

# => ((k-8)) / ((h-7)) xx (- 1/5) = - 1 #

# => k = 5h-27 …. (2) #

Порівняння (1) і (2)

# 5h-27 = -h + 11 #

# => 6h = 38 #

# => h = 6 1/3 #

Вставлення значення h в (1)

# k = -6 1/3 + 11 = 4 2/3 #

Звідси координати ортоцентру

#color (зелений) ((6 1/3 "," 4 2/3)) #