Відповідь:
Дивись нижче.
Пояснення:
Ця проблема вирішується як застосування так званої китайської теореми залишків (CRM)
Дано
і покликання
тепер виклик
У нашому прикладі
потім
ПРИМІТКА
За допомогою цього методу ми можемо знайти рішення і, зрештою, найменше. В цьому випадку
Що таке реальне число, ціле число, ціле число, раціональне число і ірраціональне число?
Пояснення Нижче раціональних чисел приходять у 3 різних формах; цілих чисел, дробів і кінцевих або повторюваних десяткових знаків, таких як 1/3. Ірраціональні цифри досить "брудні". Вони не можуть бути записані у вигляді дробів, вони нескінченні, не повторюються десяткові числа. Прикладом цього є величина π. Ціле число можна назвати цілим числом, яке є або позитивним, або негативним числом, або нулем. Прикладом цього є 0, 1 і -365.
Чи є sqrt21 дійсне число, раціональне число, ціле число, ціле число, ірраціональне число?
Це ірраціональне число і тому реальне. Доведемо спочатку, що sqrt (21) є дійсним числом, насправді, квадратний корінь всіх позитивних дійсних чисел є дійсним. Якщо x - дійсне число, то для позитивних чисел визначимо sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Це означає, що ми розглянемо всі дійсні числа y такі, що y ^ 2 <= x і беремо найменше дійсне число, яке більше, ніж всі ці y, так званий супремум. Для негативних чисел ці y не існують, оскільки для всіх дійсних чисел, приймаючи квадрат цього числа, виникає позитивне число, а всі позитивні числа більше, ніж негативні числа. Для всіх позитивних чисел завжди є
Що таке найменше позитивне ціле число, більше 1, яке при діленні на 5 або 6 залишає решту 1?
31 Найменш загальний кратний 5 і 6 дорівнює 30, щоб залишок 1 додати 1 до 30: 31