Відповідь:
Пояснення:
Рівняння дотичної лінії будь-якої функції at
Рівняння лінії 2x + 3y - 7 = 0, знайдемо: - (1) нахил лінії (2) рівняння лінії, перпендикулярної заданій лінії і проходячи через перетин лінії x-y + 2 = 0 і 3x + y-10 = 0?
-3x + 2y-2 = 0 колір (білий) ("ddd") -> колір (білий) ("ddd") y = 3 / 2x + 1 Перша частина у багато деталей демонструє роботу перших принципів. Після використання цих клавіш і використання ярликів ви використовуєте набагато менше ліній. color (blue) ("Визначити перехоплення початкових рівнянь") x-y + 2 = 0 "" ....... Рівняння (1) 3x + y-10 = 0 "" .... Рівняння ( 2) Відніміть x з обох сторін рівняння (1) даючи -y + 2 = -x Помножте обидві сторони на (-1) + y-2 = + x "" .......... Рівняння (1_a) ) Використовуючи (1_a) замінник x у (2) колір (зелений) (3колір (черв
Якими є параметричні рівняння для дотичної лінії при t = 3 для руху частки, заданої через x (t) = 4t ^ 2 + 3, y (t) = 3t ^ 3?
Bb l (лямбда) = (39,81) + лямбда (8, 27) bb r (t) = (4t ^ 2 + 3, 3t ^ 3) bbr (3) = (39,81) bb r '(t ) = (8t, 9t ^ 2) Тобто дотичний вектор. bb r '(3) = (24, 81) Дотична лінія: bb l (лямбда) = bb r (3) + лямбда bb r' (3) = (39,81) + лямбда (24, 81) може трохи факторизувати вектор напрямку: bb l (лямбда) = (39,81) + лямбда (8, 27)
Який нахил лінії, нормальної до дотичної лінії f (x) = secx + sin (2x- (3pi) / 8) при x = (11pi) / 8?
Нахил лінії, що нормалізує до дотичної лінії m = 1 / ((1 + sqrt (2) / 2) sqrt (2 + sqrt2) + ((3sqrt2) / 2 + 1) sqrt (2-sqrt2) m = 0.18039870004873 З даного: y = sec x + sin (2x- (3pi) / 8) при "" x = (11pi) / 8 Візьміть першу похідну y 'y' = sec x * tan x * (dx) / (dx) + cos (2x- (3pi) / 8) (2) (dx) / (dx) Використання "" x = (11pi) / 8 Примітка: що за кольором (синій) ("формула напівкути"), отримані сек ((11pi) / 8) = - sqrt (2 + sqrt2) -sqrt (2-sqrt2) tan ((11pi) / 8) = sqrt2 + 1 та 2 * cos (2x- (3pi) / 8 ) = 2 * cos ((19pi) / 8) = 2 * (sqrt2 / 4) (sqrt (2 + sqrt2) -sqrt (2-sqrt2)) ~