
Відповідь:
Пояснення:
Відповідь:
Пояснення:
Можна зробити це кількома способами, тут два з них. Перший - використовувати заміну:
Дозволяє
Перетворення меж:
Інтеграл стає:
Це простіший спосіб, але ви не завжди зможете зробити заміну. Альтернативою є інтеграція частинами.
Використовуйте інтеграцію за частинами:
Для функцій
Групування подібні терміни:
Ми працюємо з певним інтегралом, однак, застосовуючи обмеження і вилучаючи константу:
Що таке int_1 ^ 4 (.2x ^ 3-2x + 4) dx?

124.5 int_1 ^ 4 (2x ^ 3-2x + 4) dx = [((2x ^ 4) / 4) - ((2x ^ 2) / 2) + 4x] З верхньою межею x = 4 і нижньою межею x = 1 Застосовуйте свої обмеження в інтегрованому вираженні, тобто віднімайте нижню межу від верхньої межі. = (128-16-16) - ((1/2) -1 + 4) = 128-3 (1/2) = 124,5
Що таке похідна lnx ^ lnx?

= 2 (ln x) / x (lnx ^ lnx) ^ '= (ln x lnx) ^' = (ln ^ 2 x) ^ '= 2 ln x * 1 / x
Що таке похідна f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?

Використовуйте правило котирування та правило ланцюга. Відповідь: f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) Це спрощена версія. Дивіться Пояснення, щоб спостерігати, до якого моменту він може бути прийнятий як похідна. f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * (lnx) ') * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 У цій формі це дійсно прийнятно. А