Це залежить від того, що ви маєте на увазі. Ви маєте на увазі, що ви не можете знайти формулу антидерівативної? Або ви маєте на увазі певний інтеграл не існує?
Деякі функції, такі як
Інші функції, такі як функція
Ця остання функція є, однак, "інтегрованою Лебегом" (вимовляється "Lah-bagh" з довгим "a" звуком у другому складі). Я не буду вдаватися в подробиці, але в двох словах, є багато "теорій інтеграції", щодо яких дана функція може бути інтегрованою чи ні.
Які 3 дієслова можна використовувати тільки як транзитивні дієслова і 3, які можна використовувати лише як неперехідні дієслова?
Удар, хочеться, і кидають приклади перехідних дієслів. Прибуття, перехід і прогулянка є прикладами неперехідних дієслів. Перехідний дієслово - це той, який описує дію або діяльність і має прямий об'єкт. Найпростіший спосіб з'ясувати, чи є дієслово прямим об'єктом, це запитати, кого чи що після дієслова. Наприклад: Роберт кинув м'яч. (Робер кинув, що? Роберт кинув м'яч. «М'яч» - це прямий об'єкт до дієслова, кинув, отже, дієслово перехідне.) Прия брикає свого брата, коли він дратує її. (Прия кидає, кого? Прия брикає свого брата. Її брат - прямий об'єкт до дієслова ударів, отже, дієс
Які приклади безперервних функцій?
(1) f (x) = x ^ 2, (2) g (x) = sin (x) (3) h (x) = 3x + 1 Функція є безперервною, інтуїтивно, якщо її можна намалювати (тобто графічно) ) без підняття олівця (або ручки) з паперу. Тобто наближення до будь-якої точки x, в області функції зліва, тобто х-епсилон, як епсилон -> 0, дає те ж значення, що й наближається до тієї ж точки з правого, тобто х + епсилон, як ε Це стосується кожної з перерахованих функцій. Це не було б для функції d (x), яка визначається як: d (x) = 1, якщо x> = 0, і d (x) = -1, якщо x <0. Тобто, існує розрив при 0, як наближається до 0 зліва, один має значення -1, але, наближаючись справа, має
Які приклади композиції функцій?
Щоб скласти функцію, потрібно ввести одну функцію в іншу, щоб сформувати іншу функцію. Ось кілька прикладів. Приклад 1: Якщо f (x) = 2x + 5 і g (x) = 4x - 1, визначте f (g (x)) Це означатиме введення g (x) для x усередині f (x). f (g (x)) = 2 (4x-1) + 5 = 8x- 2 + 5 = 8x + 3 Приклад 2: Якщо f (x) = 3x ^ 2 + 12 + 12x і g (x) = sqrt ( 3x), визначаємо g (f (x)) і вказуємо домен Покласти f (x) на g (x). g (f (x)) = sqrt (3 (3x ^ 2 + 12x + 12)) g (f (x)) = sqrt (9x ^ 2 + 36x + 36) g (f (x)) = sqrt (( 3x + 6) ^ 2) g (f (x)) = | 3x + 6 | Домен f (x) x у RR. Область g (x) - x> 0. Отже, область g (f (x)) дорівнює x> 0. Приклад